

УСПЕХИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Научный журнал

№ 10 2025

ADVANCES IN CURRENT NATURAL SCIENCES

Scientific journal

No. 10 2025

PH Academy of Natural History

Успехи современного естествознания

Научный журнал

Журнал издается с 2001 года.

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций. Свидетельство – ПИ № ФС 77-63398.

«Успехи современного естествознания» – рецензируемый научный журнал, в котором публикуются статьи обладающие научной новизной, представляющие собой результаты завершенных исследований, проблемного или научно-практического характера, научные обзоры.

Журнал включен в действующий Перечень рецензируемых научных изданий (ВАК РФ). К2.

Журнал ориентируется на профессиональных работников сельского хозяйства, экологов, научных сотрудников, специалистов в смежных областях знаний, занимающихся изучением наук о земле.

Основные научные направления: 1.6. Науки о Земле и окружающей среде, 2.8. Недропользование и горные науки, 4.1. Агрономия, лесное и водное хозяйство.

ГЛАВНЫЙ РЕДАКТОР

Ледванов Михаил Юрьевич, д.м.н., профессор

Технический редактор

Доронкина Е.Н.

ОТВЕТСТВЕННЫЙ СЕКРЕТАРЬ

Бизенкова Мария Николаевна, к.м.н.

Корректор

Галенкина Е.С., Дудкина Н.А.

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Д.с.-х.н., доцент Абдулвалеев Р.Р. (Уфа); д.г.-м.н., проф., Абилхасимов Х.Б. (Астана); д.т.н., проф. Айдосов А. (Алматы); д.г.-м.н., проф. Алексеев С.В. (Иркутск); д.х.н., проф., Алоев В.З. (Нальчик); д.г.н., проф. Андреев С.С. (Ростов-на-Дону); д.г.-м.н., доцент, Андреев Е.С. (Ростов-на-Дону); д.с.-х.н., доцент Анищенко Л.Н. (Брянск); д.с.-х.н., проф. Байрамбеков Ш.Б. (Камызяк); д.т.н., проф. Бейсембаев К.М. (Караганда); д.т.н., проф. Белозеров В.В. (Ростов-на-Дону); д.б.н., доцент Белоус О.Г. (Сочи); д.с.-х.н., проф. Берсон Г.З. (Великий Новгород); д.г.-м.н., проф. Бондарев В.И. (Екатеринбург); д.т.н., проф. Селикии А.Ф. (Ухта); д.г.-м.н., проф. Гавришин А.И. (Новочеркасск); д.с.-х.н., Горбачева А.Г. (Пятигорск); д.с.-х.н., Доранин О.И. (Самара); д.г.-м.н., проф. Гавришин А.И. (Новочеркасск); д.с.-х.н., проф. Дресевников А.Ф. (Казань); д.г.н., проф. Егорина А.В. (Усть-Каменогорск); д.т.н., проф. Егорина А.В. (Мурманск); д.э.н., проф. Долямовский В.А. (Ростов-на-Дону); д.х.н., проф. Дресевников А.Ф. (Казань); д.г.-м.н., проф. Егорина А.В. (Усть-Каменогорск); д.т.н., проф. Берсев В.И. (Томск); д.с.-х.н., проф. Ивашкевич А.В. (Помск); д.с.-х.н., проф. Заолинский В.П. (Волгоград); д.х.н., проф. Ивашкевич А.В. (Помск); д.с.-х.н., проф. Караев М.К. (Махачкала); д.г.-м.н., проф. Караев М.С. (Пермы); д.г.-м.н., проф. Кучеренко И.В. (Самара); д.с.-х.н., коцарева Н.В. (Белгород); д.т.н., проф. Кобрунов А.И. (Укта); д.г.-м.н., проф. Кучеренко И.В. (Томск); д.б.н., проф. Ларионов М.В. (Саратов); д.г.-м.н., проф. Месьимев А.И. (Мрскуртск); д.ф.-м.н., проф. Мусаев В.К. (Москва); д.г.-м.н., проф. Мусаев В.К. (Москва); д.г.-м.н., проф. Парионов М.В. (Саратов); д.г.-м.н., проф. Месьейев В.И. (Кызыл); д.ф.-м.н., проф. Мусаев В.К. (Москва); д.г.-м.н., проф. Парионов А.В. (Саратов); д.г.-м.н., проф. Петров М.Н. (Красноврск); д.г.н., проф. Парионов В.В. (Саратов); д.г.-м.н., проф. Пирионов В.И. (Саратов);

ISSN 1681-7494

Электронная версия: http://www.natural-sciences.ru

Правила для авторов: http://www.natural-sciences.ru/ru/rules/index

Двухлетний импакт-фактор РИНЦ = 0,775 Пятилетний импакт-фактор РИНЦ = 0,368

Периодичность 12 номеров в год

Учредитель, издатель и редакция ООО ИД «Академия Естествознания»

Почтовый адрес 105037, г. Москва, а/я 47

Адрес редакции и издателя 440026, г. Пенза, ул. Лермонтова, 3 Типография ООО «НИЦ Акалемия Естествознания»

410035, г. Саратов, ул. Мамонтовой, 5

+7 (499) 705-72-30 E-mail edition@rae.ru Телефон

Подписано в печать 31.10.2025 Дата выхода номера 28.11.2025

Формат 60x90 1/8 Усл. печ. л. 8.9

Тираж 1000 экз. Заказ УСЕ 2025/10

Распространяется по свободной цене

Подписной индекс в электронном каталоге «Почта России»: П7816

© ООО ИД «Академия Естествознания»

Advances in current natural sciences

Scientific journal

The journal has been published since 2001.

The journal is registered by the Federal Service for Supervision of Communications, Information Technology and Mass Communications. Certificate – PI No. FS 77-63398.

«Advances in current natural sciences» is a peer-reviewed scientific journal that publishes articles of scientific novelty, which are the results of completed research, of a problematic or scientific-practical nature, scientific reviews.

The journal is included in the current List of peer-reviewed scientific publications (HCC RF). K2.

The journal is aimed at professional agricultural workers, environmentalists, researchers, specialists in related fields of study geosciences.

Main scientific directions: 1.6. Earth and environmental sciences, 2.8. Subsoil use and mining sciences, 4.1. Agronomy, forestry and water management.

CHIEF EDITOR Technical editor

Ledvanov Mikhail Yurievich, Dr. Sci. (Medical), Prof.

Doronkina E.N.

EXECUTIVE SECRETARY

Bizenkova Maria Nikolaevna, Cand. Sci. (Medical)

Galenkina E.S.,
Dudkina N.A.

EDITORIAL BOARD

D.Sc., Docent Abdulvaleev R.R. (Ufa); D.Sc., Prof. Abilkhasimov Kh.B. (Astana); D.Sc., Prof. Aidosov A. (Almaty); D.Sc., Prof. Alekseev S.V. (Irkutsk); D.Sc., Prof. Aloev V.Z. (Nalchik); D.Sc., Prof. Andreev S.S. (Rostov-on-Don); D.Sc., Docent, Andreeva E.S. (Rostov-on-Don); D.Sc., Docent Anishchenko L.N. (Bryansk); D.Sc., Prof. Bayrambekov Sh.B. (Kamyzyak); D.Sc., Prof. Beisembaev K.M. (Karaganda); D.Sc., Prof. Belozerov V.V. (Rostov-on-Don); D.Sc., Docent Belous O.G. (Sochi); D.Sc., Prof. Berson G.Z. (Velikiy Novgorod); D.Sc., Prof. Bondarev V.I. (Ekaterinburg); D.Sc., Prof. Galkin A.F. (Ukhta); D.Sc., Prof. Gavrishin A.I. (Novocherkassk); D.Sc., Gorbacheva A.G. (Pyatigorsk); D.Sc., Goryanin O.I. (Samara); D.Sc., Prof. Gusev A.I. (Biysk); D.Sc., Prof. Danilin I.M. (Krasnoyarsk); D.Sc., Docent Dolgov A.V. (Murmansk); D.Sc., Prof. Dolyatovsky V.A. (Rostov-on-Don); D.Sc., Prof. Dresvyannikov A.F. (Kazan); D.Sc., Prof. Egorina A.V. (Ust-Kamenogorsk); D.Sc., Prof. Erofeev V.I. (Tomsk); D.Sc., Prof. Zalesov S.V. (Ekaterinburg); D.Sc., Docent Zakharchenko A.V. (Tomsk); D.Sc., Prof. Zvolinsky V.P. (Volgograd); D.Sc., Prof. Ivashkevich A.N. (Moscow); D.Sc., Docent Kavtsevich N.N. (Murmansk); D.Sc., Prof. Katylakin S.A. (Donetsk); D.Sc., Prof. Karaev M.K. (Makhachkala); D.Sc., Prof. Kashaev A.A. (Irkutsk); D.Sc., Prof. Kostitsyn V.I. (Perm); D.Sc., Prof. Kostitsyn V.I. (Perm); D.Sc., Prof. Kostylev P.I. (Zernograd); D.Sc., Prof. Kosyakova I.V. (Samara); D.Sc., Kotsareva N.V. (Belgorod); D.Sc., Docent Kuzyakov O.N. (Tyumen); D.Sc., Prof. Kucherenko I.V. (Tomsk); D.Sc., Prof. Larionov M.V. (Saratov); D.Sc., Prof. Lebedev V.I. (Kyzyl); D.Sc., Prof. Musaev V.K. (Moscow); D.Sc., Prof. Larionov M.V. (Khanty-Mansiysk); D.Sc. Nikitin S.N. (Ulyanovsk); D.Sc., Prof. Musaev V.K. (Moscow); D.Sc., Prof. Partoev K. (Dushanbe); D.Sc., Prof. Poezdov P.N. (Saratov); D.Sc., Prof. Sakiev K.S. (Bishkek); D.Sc., Prof. Pirumyan G.P. (Yerevan); D.Sc., Prof. Proezdov P.N. (Saratov); D.Sc., Prof. Tikhanovsky A.N. (Salekhard); D.Sc., Prof. Tikh

ISSN 1681-7494

Electronic version: http://www.natural-sciences.ru

Rules for authors: http://www.natural-sciences.ru/ru/rules/index

Impact-factor RISQ (two-year) = 0.775Impact-factor RISQ (five-year) = 0.368

Periodicity 12 issues per year

Founder, publisher and editors
Mailing address
LLC PH Academy of Natural History
105037, Moscow, p.o. box 47
440026, Penza, st. Lermontov, 3
LLC SPC Academy of Natural History
410035, Saratov, st. Mamontova, 5

E-mail edition@rae.ru **Telephone** +7 (499) 705-72-30

Signed for print 31.10.2025 Number issue date 28.11.2025

Format 60x90 1/8 Conditionally printed sheets 8,9

Circulation 1000 copies Order YCE 2025/10

Distribution at a free price

Subscription index in the Russian Post electronic catalog: P7816

© LLC PH Academy of Natural History

СОДЕРЖАНИЕ

Сельскохозяйственные науки (4.1.1 Общее земледелие и растениеводство)	
СТАТЬЯ	
ПОВЫШЕНИЕ ПРОДУКТИВНОСТИ ЗЕЛЕНОЙ МАССЫ НЕКТАРОНОСНЫХ КУЛЬТУР ПРИ БАКТЕРИЗАЦИИ СЕМЯН РИЗОБАКТЕРИЯМИ	
Лебедев В.Н., Кондрат С.В., Ураев Г.А.	8
Географические науки (1.6.8, 1.6.12, 1.6.13, 1.6.21)	
СТАТЬИ	
ГЕОДЕМОГРАФИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ И РАЗМЕЩЕНИЯ СЕЛЬСКОГО НАСЕЛЕНИЯ В ПРИВОЛЖСКОМ ФЕДЕРАЛЬНОМ ОКРУГЕ (2013–2023 ГГ.)	
Гайсин Р.И.	15
ЗАГРЯЗНЕНИЕ ТЯЖЕЛЫМИ МЕТАЛЛАМИ ПОЧВ В ЗОНЕ ВЛИЯНИЯ ЧЕРЕПОВЕЦКОГО МЕТАЛЛУРГИЧЕСКОГО КОМБИНАТА	
Репина В.И., Недбаев И.С.	23
ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ИЗМЕНЧИВОСТЬ СОДЕРЖАНИЯ ГЛАВНЫХ ИОНОВ В ВОДЕ НИЖНЕГО ТЕЧЕНИЯ РЕКИ ДОН (2000–2024 ГГ.)	
Сазонов А.Д.	31
МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ В БЕЛОМ МОРЕ	
Толстиков А.В. , Чернов И.А.	36
Технические науки (1.6.7, 1.6.9, 1.6.16, 2.8.1, 2.8.6, 2.8.7, 2.8.9)	
СТАТЬЯ	
ПРИМЕНЕНИЕ МЕТОДА ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА ДЛЯ ИССЛЕДОВАНИЯ ГАЗОНОСНОСТИ ТРЕЩИНОВАТЫХ УГЛЕЙ	
Рыбалкин Л.А., Шилова Т.В., Азаров А.В., Шажко Я.В.	44

Физико-математические науки (1.6.22)

СТАТЬИ	
ИССЛЕДОВАНИЕ ТОЧНОСТИ КИНЕМАТИКИ	
В РЕАЛЬНОМ ВРЕМЕНИ С ИСПОЛЬЗОВАНИЕМ	
ВИРТУАЛЬНОЙ БАЗОВОЙ СТАНЦИИ	
Жимагулов Д.К.	51
ОЦЕНКА ТОЧНОСТИ ВЫПОЛНЕНИЯ ГЕОДЕЗИЧЕСКИХ	
РАБОТ ПРИ ЗАКЛАДКЕ КОЛЛЕКЦИИ ВИНОГРАДНИКОВ	
НА ТЕРРИТОРИИ УЧЕБНО-ОПЫТНОГО ХОЗЯЙСТВА «КУБАНЬ»	
Солодунов А.А., Гурский И.Н., Пиидаток С.К.	57
Сельскохозяйственные науки (4.1.6. Лесоведение, лесоводство, лесные кул агролесомелиорация, озеленение, лесная пирология и таксация)	пьтуры,
СТАТЬЯ	
МИКРОЭЛЕМЕНТЫ В ПОЛИСУБСТРАТНЫХ ВИДАХ	
ЭПИФИТНЫХ ЛИШАЙНИКОВ В СВЯЗИ	
С ОСОБЕННОСТЯМИ МЕСТООБИТАНИЙ	
Катаева М.Н., Беляева А.И.	65

CONTENTS

Agricultural Sciences (4.1.1 General Agriculture and Flant Growing)
ARTICLE
INCREASING THE PRODUCTIVITY OF GREEN BIOMASS OF NECTARIFEROUS CROPS THROUGH SEED BACTERIZATION WITH RHIZOBACTERIA
Lebedev V.N., Kondrat S.V., Uraev G.A.
Geographical sciences (1.6.8, 1.6.12, 1.6.13, 1.6.21)
ARTICLES
GEODEMOGRAPHIC ASPECTS OF DEVELOPMENT AND PLACEMENT OF RURAL POPULATION IN THE VOLGA FEDERAL DISTRICT (2013–2023)
Gaysin R.I.
THE CHEMICAL COMPOSITION OF SOILS WITHIN THE AREA OF THE CHEREPOVETS METALLURGICAL COMBINE INFLUENCE
Repina V.I., Nedbaev I.S.
SPATIAL-TEMPORAL VARIABILITY OF THE CONTENT OF MAIN IONS IN THE WATER OF THE LOWER REACH OF THE DON RIVER (2000–2024)
Sazonov A.D.
MODELLING THE SPREAD OF OIL AND OIL PRODUCTS IN THE WHITE SEA
Tolstikov A.V., Chernov I.A. 30
Technical sciences (1.6.7, 1.6.9, 1.6.16, 2.8.1, 2.8.6, 2.8.7, 2.8.9)
ARTICLE
APPLICATION OF NUCLEAR MAGNETIC RESONANCE METHOD FOR STUDYING GAS CONTENT IN FRACTURED COALS
Rybalkin L.A., Shilova T.V., Azarov A.V., Shazhko Ya.V.

Physical and mathematical sciences (1.6.22)	
ARTICLES	
REAL-TIME KINEMATIC ACCURACY STUDY USING A VIRTUAL BASE STATION	
Zhimagulov D.K.	51
ASSESSMENT OF THE ACCURACY OF GEODETIC WORK DURING THE LAYING OF A COLLECTION OF VINEYARDS ON THE TERRITORY OF THE «KUBAN» EDUCATIONAL AND EXPERIMENTAL FARM	
Solodunov A.A., Gursky I.N., Pshidatok C.K.	57
Agricultural sciences (4.1.6. Forestry, forestry, forest crops, agroforestry importantly importantly forest pyrology and taxation)	rovement,
ARTICLE	
MICROELEMENTS IN POLYSUBSTRATE EPIPHYTIC LICHENS IN CONNECTION TO FEATURES OF HABITATS	
Katawa M.N. Robawa A.I.	65

СТАТЬЯ

УДК 631.8:638.132.2:581.14 DOI 10.17513/use.38436

ПОВЫШЕНИЕ ПРОДУКТИВНОСТИ ЗЕЛЕНОЙ МАССЫ НЕКТАРОНОСНЫХ КУЛЬТУР ПРИ БАКТЕРИЗАЦИИ СЕМЯН РИЗОБАКТЕРИЯМИ

¹Лебедев В.Н. ORCID ID 0000-0002-6552-4599, ¹Кондрат С.В. ORCID ID 0000-0002-9628-7338, ²Ураев Г.А. ORCID ID 0000-0002-2800-5108

¹ФГБОУ ВО «Российский государственный педагогический университет имени А.И. Герцена», Россия, Санкт-Петербург, e-mail: antares-80@yandex.ru; ²ФГБОУ ВО «Петербургский государственный университет путей сообщения Императора Александра I», Россия, Санкт-Петербург

Исследование проводилось при помощи полевых опытов и было посвящено выявлению эффективности влияния предпосевной бактеризации ассоциативными ростостимулирующими ризосферными микробами некоторых нектароносных культур при выращивании на зеленую массу. В работе использовались культуры, способные формировать высокую биомассу надземных органов в условиях Ленинградской области: бурачник лекарственный, или бораго (Borago officinalis L.), сорт Гном, и фацелия пижмолистная (Phacelia tanacetifolia Ветт.), сорт Рязанская. В качестве микробиологических препаратов были выбраны штаммы, рекомендованные для внесения под кормовые и сидеральные сельскохозяйственные виды: Aгрофил (Agrobacterium radiobacter, шт. 10), Мизорин (Arthrobacter mysorens, штамм 7), Флавобактерин (Flavobacterium sp., шт. 30) и Экстрасол (Bacillus subtilis, шт. Ч-13). Выявлено, что для обеих культур наибольшая эффективность в отношении полевой всхожести, высоты растегий и продуктивности (размеров зеленой и сухой массы) отмечается в опытном варианте с использованием биопрепаратов Флавобактерина и Агрофила. При этом фацелия отличалась не только формированием более значительной фитомассы, но и более существенными прибавками как сырой (на 27%), так и сухой массы (на 41%) относительно контроля (без инокуляции). В то же самое время биохимический анализ сухой массы надземных органов показал, что содержание основных элементов минерального питания увеличивается при бактеризации семян бурачника Экстрасолом и Агрофилом, а у фацелии – в вариантах с применением Экстрасола и Мизорина. При этом концентрация общего азота (до 1,9-1,8 %%) и фосфора (до 2,64-1,56%) интенсивней накапливалась в надземных органах бурачника, а калия (до 3,9-3,2%) - у фацелии. Оценка экономического эффекта от реализации сырой зеленой и сухой массы надземных частей данных культур показала, что применение ассоциативных ростостимулирующих ризосферных бактерий, входящих в основу отобранных биопрепаратов, позволяет увеличить уровень эффективности аграрного предприятия.

Ключевые слова: бурачник лекарственный, фацелия пижмолистная, бактеризация, ростостимулирующие ризосферные бактерии, всхожесть, рост, продуктивность, элементы минерального питания, экономический эффект

INCREASING THE PRODUCTIVITY OF GREEN BIOMASS OF NECTARIFEROUS CROPS THROUGH SEED BACTERIZATION WITH RHIZOBACTERIA

¹Lebedev V.N. ORCID ID 0000-0002-6552-4599, ¹Kondrat S.V. ORCID ID 0000-0002-9628-7338, ²Uraev G.A. ORCID ID 0000-0002-2800-5108

¹Herzen State Pedagogical University of Russia, Russia, Saint Petersburg, e-mail: antares-80@yandex.ru; ²Emperor Alexander I Saint Petersburg State Transport University, Russia, Saint Petersburg

The study was conducted through field experiments and aimed to identify the effectiveness of pre-sowing inoculation with associative growth-stimulating rhizosphere microbes on some nectar-bearing crop plants during cultivation in terms of green mass production. The crops used were capable of producing high aboveground biomass under the conditions of the Leningrad Region: common borage (*Borago officinalis* L., 1753), cultivar Gnom, and tansy-leaved phacelia (*Phacelia tanacetifolia* Berth., 1834), cultivar Ryazanskaya. Microbiological preparations selected included strains recommended for application under forage and silage crops: Agrofil (*Agrobacterium radiobacter*, strain 10), Mizorin (*Arthrobacter mysorens*, штамм 7), Flavobacterin (*Flavobacterium* sp., strain 30), and Extrasol (*Bacillus subtilis*, шт. CH-13). The highest effectiveness regarding field germination, plant height, and productivity (amounts of green and dry biomass) was observed in treatments using the biopreparations Flavobacterin and Agrofil. Phacelia not only formed significantly greater phytomass but also showed substantial increases in both fresh (by 27%) and dry mass (by 41%) compared to the control (without inoculation). Biochemical analysis of dry aboveground biomass revealed increased content of key mineral nutrients (NPK) after bacterization of borage seeds with Extrasol (Bacillus subtilis, strain Ch-13) and Agrofil, and in phacelia with Extrasol and Mizorin. Nitrogen (up to 1.9-1.8%) and phosphorus (up to 3.9-3.2%) increased more in phacelia. An analysis of the economic impact of selling the raw green and dry biomass of the above-ground parts of these crops has revealed that the use of associative growth-promoting rhizospheric bacteria, which are the basis of selected biological products, can increase the efficiency of agricultural enterprises.

Keywords: borage (starflower), tansy-leaved phacelia, bacterization, Plant Growth Promoting Rhizobacteria (PGPR), germination, growth, productivity, elements of mineral nutrition, economic effect

Введение

Проблема интенсификации различных сельскохозяйственных направлений требует поиска эффективных решений, способствующих максимальной реализации продуктивного потенциала культурных растений. При этом экологизация земледелия делает самыми приоритетными направления, способствующие снижению химической нагрузки на окружающую среду. Внедрение в агробиоценозы ассоциативных ростостимулирующих эндофитных бактерий при помощи предпосевной бактеризации (инокуляции) семян в последнее время стало одним из популярных векторов развития как мирового [1], так и отечественного [2] сельского хозяйства. Это связано с тем, что в качестве дополнительного преимущества агробиологическое направление способствует стимуляции резистентных свойств возделываемых объектов. Многочисленные исследования указывают [3; 4], что инокулированные ризосферными эндофитными микроорганизмами растения лучше переживают критический период при почвенной засухе, формируют более обогащенный элементами минерального питания урожай зеленой массы или семян, в меньшей степени способны накапливать тяжелые металлы и подвергаться фитогенным заболеваниям.

Однако предварительно прогнозировать влияние того или иного ризобактериального штамма на растительный организм не представляется возможным в силу его не только видовой, но и сортовой генетической специфики. По некоторым данным [5], немаловажную роль играют также и почвенно-климатические условия.

В качестве объектов исследований были отобраны такие культуры как бурачник лекарственный, или бораго (Borago officinalis L. сем. Бурачниковые — Boraginaceae Juss.), сорт Гном, и фацелия пижмолистная (Phacelia tanacetifolia Berth., сем. Водолистниковые — Hydrophyllaceae R.Br.), сорт Рязанская. Выбор данных видов нектароносов основывался на их относительно высоком потенциале медопродуктивности [6] и урожае зеленой фитомассы [7] в условиях северо-западной зоны РФ, что делает их перспективными для использования на зеленый корм, в качестве источника сидератов и как медоносных культур.

Цель исследования – выявление эффективности влияния предпосевной бактеризации ассоциативными ростостимулирующими ризосферными микробами некоторых

нектароносных культур при выращивании на зеленую массу.

Материалы и методы исследования

Работа с растениями-нектароносами проводилась в условиях полевого опыта на супесчаной почве дерново-слабоподзолистого типа в Гатчинском районе Ленинградской области, на протяжении трех лет: 2022–2024 гг. в четырехкратной повторности, согласно стандартной методике постановки полевых опытов [8, с. 57, 64]. До проведения эксперимента данная площадь несколько лет находилась под уравнительным посевом смеси яровых злаков.

В качестве бактериальных препаратов были отобраны четыре, на основе ассоциативных ростостимулирующих ризосферных штаммов микробов, которые чаще всего рекомендуются для кормовых культур [9, с. 16]: Агрофил (Agrobacterium radiobacter, штамм 10), Мизорин (Arthrobacter mysorens, штамм 7), Флавобактерин (Flavobacterium sp., штамм 30) и Экстрасол (Bacillus subtilis, штамм Ч-13).

Процесс инокуляции семенного материала проводился непосредственно перед посевом. В форме стандартной суспензии, рекомендованной для такого типа бактеризации, биопрепараты наносились на семена [10]. Семена контрольного опыта поливались водой того же объема. Полевая всхожесть фиксировалась на 10-й день после посева. Учет морфометрических и биохимических показателей, а также продуктивности осуществлялся в период укосной спелости растений - в фазу массового цветения. Основные элементы минерального питания (азот, фосфор и калий) определялись методом мокрого озоления сухой растительной массы с получением вытяжек, согласно агрохимическому анализу по методике К.Е. Гинзбург. Продуктивность растений оценивалась по накоплению сухой биомассы в надземных органах на момент проведения укоса. Результаты полевого опыта статистически обрабатывались дисперсионным методом анализа [11].

В проведенных авторами исследованиях на других культурах было показано и подробно рассмотрено, что использование ассоциативных ризобактериальных штаммов приводит к увеличению такого показателя, как экономический эффект [12]. В данной работе была проведена оценка экономического эффекта как абсолютного изменения дохода от реализации биомассы нектароносных культур опытных вариантов в сравне-

нии со значениями, которые были получены в контрольных вариантах полевого опыта.

Результаты исследования и их обсуждение

Особенности морфогенетических изменений в онтогенезе растительного организма происходят в результате целого комплекса ростовых процессов, что в итоге во многом определяет формирование его продуктивности. Эти явления обычно начинаются уже на ранних этапах органогенеза с момента прорастания семени. Поэтому полевая всхожесть является одним из важнейших параметров, по которому можно судить об эффективности взаимодействия ризобактерий и растения. Однако чем раньше возникает ассоциация «ризобактерия — растение», тем быстрее и интенсивнее происходит процесс стимуляции ростовых процессов.

Проведенный анализ результатов опытов выявил разную степень положительного влияния ризобактериальных штаммов на прорастание семян бурачника и фацелии

(табл. 1). Для обеих культур за 3 года исследований наиболее эффективными в отношении всхожести оказались ассоциативные бактерии в основе биопрепаратов Агрофил и Флавобактерин. В данных вариантах опыта у бурачника лекарственного этот показатель увеличился на одну треть (до 88%) относительно контроля (66%), а у фацелии пижмолистной – до 80–78%, что на 14–11% выше контрольных данных.

Растения данных вариантов в дальнейшем своем развитии также отличались более интенсивными ростовыми процессами. К периоду их массового цветения средняя высота данных культур наиболее заметно отличалась при использовании в опыте микробиологического препарата Флавобактерин. Высота бурачника на 12% была выше контроля (53,0 см), составляла 59,4 см, а у растений фацелии этот показатель достигал 96,6 см, что на 9% превышало результаты у растений, развившихся из семян, которые не были подвергнуты предпосевной обработке биопрепаратами (88,6 см).

Таблица 1 Влияние ризобактерий на всхожесть и высоту бурачника и фацелии (среднее за 2022–2024 гг.)

	Бурачник лекарственный				Фацелия пижмолистная			
Вариант	Bexo	ожесть Высота		Bexo	жесть	Высота		
	%	$\Delta\%$	СМ	%	%	$\Delta\%$	СМ	%
Контроль	66	100	53,0	100	70	100	88,6	100
Агрофил	88	133	57,8	109	78	111	95,9	108
Мизорин	74	112	56,6	107	75	107	91,6	103
Флавобактерин	88	133	59,4	112	80	114	96,6	109
Экстрасол	80	121	57,0	108	74	106	92,0	104
HCP ₀₅	7,1	_	3,9	-	5,0	_	3,2	_

Источник: составлено авторами на основе полученных данных в ходе исследования.

Таблица 2 Действие бактериальных препаратов на урожайность зеленой массы бурачника и фацелии (среднее за 2022–2024 гг.)

	Бурачник лекарственный				Фацелия пижмолистная			
Вариант	Сырая	Сырая масса Сухая масса		Сырая	масса	Сухая масса		
	т/га	%	т/га	%	т/га	%	т/га	%
Контроль	7,6	100	5,30	100	20,96	100	5,96	100
Агрофил	9,8	129	5,78	109	23,44	126	7,86	132
Мизорин	9,0	118	5,70	108	24,67	118	7,40	124
Флавобактерин	9,8	129	5,94	112	26,62	127	8,39	141
Экстрасол	8,4	111	5,66	107	23,20	111	6,35	107
HCP ₀₅	5,2	_	3,5	_	8,8	_	3,7	_

Источник: составлено авторами на основе полученных данных в ходе исследования.

Комплекс изменений ростовых процессов, которые наблюдались у растений бурачника и фацелии после бактеризации их семян, нашел свое отражение в формировании продуктивности надземных органов в фазу их массового цветения.

Как показали исследования (табл. 2), наиболее эффективными в отношении урожайности зеленой массы обеих культур были ризосферные бактерии *Flavobacterium sp.* шт. 30 и *Bacillus subtilis*, шт. Ч-13. Так, у бурачника она возрастала на 29% – от 7,6 т/га (контроль) до 9,8 т/га, а у фацелии на 28–27% – от 20,96 т/га в контроле до 26,62 т/га (Флавобактерин) и 26,44 т/га (Экстрасол). При этом все опытные варианты, кроме этих двух, достоверно отличались не только от контроля, но и друг от друга.

Аналогичная закономерность также была отмечена и при анализе воздушно-сухой биомассы надземных органов, на основании которой оценивалось накопление сухого вещества в надземных органах нектароносных растений. Именно данный показатель является важнейшим структурным элементом продуктивности при выращивании культуры на корм или сидерат.

По результатам анализа наибольший эффект накопления сухого вещества отмечался в опытном варианте, где использовался бактериальный препарат Флавобактерин — 5,94 т/га (бурачник лекарственный) и 8,39 т/га (фа-

целия пижмолистная), относительно массы растений контрольных вариантов (без бактеризации) – 5,30 и 5,96 т/га соответственно.

Следует отметить, что опытные варианты бурачника по сухой массе достоверно отличались от контроля, но не между собой. Поэтому относительно контроля размеры прибавок после проведения бактеризации семян не такие значительные (7–12%), как при ранее проведенном анализе сырой массы данной культуры. Кроме того [13], у фацелии пижмолистной, которая известна своей способностью формировать высокие урожаи биомассы в северо-западном регионе РФ, авторами было выявлено более интенсивное увеличение сухой массы у опытных растений, что в среднем на 7-32 % превышало контрольные показатели. Установленные авторами различия между всеми вариантами полевого опыта для данного нектароносного растения являются достоверными.

Как было показано ранее в ряде исследований [14; 15], ростостимулирующие ассоциативные бактерии, после внесения их на семена или корневую систему, способны активизировать целый ряд метаболических процессов, приводя к улучшению минерального питания растений. В результате у аграрных культур повышается вынос ценных химических элементов из почвы с урожаем семян или надземной массы, что улучшает качество такой продукции.

Таблина 3

Содержание основных минеральных элементов в сухой массе растений (среднее за 2022–2024 гг.)

N K Вариант % Λ% % $\Delta\%$ % $\Delta\%$ Бурачник лекарственный 100 Контроль 0,3 0,74 100 1,6 100 1,8 2,5 Агрофил 600 2,64 357 156 1,6 533 1,28 173 1,9 119 Мизорин Флавобактерин 0,6 200 1,11 150 2,3 144 1,9 1,56 633 211 2,6 163 Экстрасол 0,2 0,33 0,3 HCP_{05} Фацелия пижмолистная 1,32 1,4 100 Контроль 0,3 100 100 1,7 567 2,00 909 2,6 186 Агрофил 1,8 600 2,23 169 3,2 448 Мизорин Флавобактерин 0,5 167 1,69 128 2,0 143 Экстрасол 1.8 600 2,63 199 3,9 278 0,35 HCP₀₅ 0,3 0,8

Источник: составлено авторами на основе полученных данных в ходе исследования.

Таблица 4

Доход от реализации сухой массы растений с 1 га

Домичант	Бурачник ле	карственный	Фацелия пижмолистная		
Вариант	тыс. руб.	%	тыс. руб.	%	
Контроль	530	100,0	476,8	100,0	
Агрофил	578	109,1	628,8	131,8	
Мизорин	570	107,5	592,0	124,2	
Флавобактерин	594	112,1	671,2	140,7	
Экстрасол	566	106,8	508,0	106,5	

Источник: составлено авторами на основе полученных данных в ходе исследования.

Биохимический анализ сухой массы в фазу массового цветения исследованных растений выявил некоторое увеличение общего содержания азота, фосфора и калия (NPK) (табл. 3). У бурачника лекарственного наиболее высокая концентрация фосфора в опытном варианте с применением Агрофила (2,64%), а азота – при использовании Экстрасола (1,9%) и Агрофила (1,8%). При этом существенное увеличение концентрации калия отмечалось в тех же вариантах с Экстрасолом (2,6%), Агрофилом (2,5%), так и при бактеризации семян Флавобактерином (2,3%). Растения бурачника в контрольных вариантах полевого опыта заметно отличались более низкими показателями данных элементов минерального питания: 0.74% (фосфор), 0.3% (азот) и 1.6% (калий).

Содержание данных элементов минерального питания в сухой надземной массе опытных вариантов фацелии пижмолистной также достоверно отличалось от контроля: 0,3 % (азот), 1,32 % (фосфор) и 1,4 % (калий). В отношении азота максимальные прибавки (до 1,8%) авторами были отмечены у растений, чьи семена непосредственно перед посевом были инокулированы ризобактериальными препаратами Мизорин и Экстрасол. Аналогичная эффективность у данных препаратов прослеживалась по калию -3,2 и 3,9% соответственно. Наиболее интенсивное накопление фосфора по приросту в сухом веществе надземных органов фацелии также были отмечены при обработке данными биопрепаратами – 2,63% (Экстрасол) и 2,23 % (Мизорин).

Следует отметить отсутствие заметного повышения накопления NPK к фазе активного цветения в растениях у обеих культур, после их семенной инокуляции флавобактериями (*Flavobacterium sp.* шт. 30), то есть в тех вариантах, где наблюдались наиболее

интенсивный рост и максимальные значения продуктивности сухой массы. Подобная особенность накопления минеральных элементов растениями может объясняться так называемым «эффектом разбавления». Во многих исследованиях отмечается [16, с. 72; 17 с. 83, 88], что при более интенсивном формировании зеленой массы, урожая семян и даже высокой динамике линейного роста растительных организмов, вынос из почвы NPK замедляется.

Все морфологические и продуктивные изменения, которые раньше происходили в опытных вариантах с культурами бурачника лекарственного и фацелии пижмолистной, где семенной материал перед посевом был подвергнут бактеризации ризосферными штаммами бактерий, также повлияли на уровень экономического эффекта от процесса реализации сухой массы растений (табл. 4).

Доход аграрного предприятия от реализации биомассы бурачника лекарственного и фацелии пижмолистной при применении бактериальных препаратов значительно возрастает по сравнению с контролем. По оценкам авторов, среднее увеличение дохода по бурачнику при использовании препаратов достигает от 6,8% (Экстрасол) до 12,1% (Флавобактерин), при этом максимальный рост выручки составляет 594 тыс. руб./га против 530 тыс. руб./га в контроле. Аналогичная положительная динамика наблюдается и по фацелии - выручка увеличивается в диапазоне от 6,5% (Экстрасол) до 40,7% (Флавобактерин), достигая максимума в 671,2 тыс. руб./га по сравнению с 476,8 тыс. руб./га в контроле. Таким образом, применение бактериальных препаратов, а особенно Флавобактерина, обеспечивает значительный экономический эффект и способствует повышению доходности производства данных культур.

Заключение

Таким образом, в результате проведенных исследований удалось установить положительный эффект от бактеризации семян таких нектароносных растений, как бурачник лекарственный (бораго) (Borago officinalis L., 1753) и фацелия пижмолистная (Phacelia tanacetifolia Berth., 1834) при их выращивании на зеленую массу. В полевом опыте использовались четыре ассоциативных штамма ростостимулирующих ризосферных бактерий, которые представляют основу соответствующих биопрепаратов.

Наиболее эффективными из них оказались Flavobacterium sp. шт. 30 и Agrobacterium radiobacter, шт. 10. Растения, развившиеся из семян, бактеризированных данными штаммами, отличались от контроля более высокими показателями полевой всхожести (на 11–33 %), ростовых процессов (на 8–12%), что в дальнейшем отразилось на количественных характеристиках их продуктивности. Так, зеленая масса бурачника в обоих опытных вариантах увеличивалась до 9,8 т/га, по сравнению с контролем (7,6 т/га), а у фацелии – до 26,62-23,44 т/га, что на 27–26% превышало контрольные данные (20,96 т/га). При этом сухая масса надземных органов у бурачника, по отношению к контролю (5,30 т/га), была на 12% выше при использовании флавобактерий (5,94 т/га) и на 9% – бацилл (5,78 т/га). В опыте с фацелией сухая масса растений значительно превышала контрольный вариант без бактеризации (5,96 т/га) на 41% (Флавобактерин) и на 32% (Агрофил), что составляло 8,39 и 7,86 т/га соответственно.

Анализ сухой массы растений на содержание валовых форм основных элементов минерального питания, проведенный в период массового цветения растений, выявил, что для бурачника лекарственного наиболее эффективной является предпосевная обработка семян Экстрасолом и Агрофилом, а для фацелии пижмолистной — Экстрасолом и Мизорином. При этом концентрация общего азота (до 1,9–1,8%) и фосфора (до 2,64–1,56%) интенсивней накапливалась в надземных органах бурачника, а калия (до 3,9–3,2%) — у фацелии.

Оценка экономического эффекта от реализации массы надземных частей данных культур показала, что применение ассоциативных ростостимулирующих ризосферных бактерий, входящих в основу отобранных биопрепаратов, позволяет увеличить уровень дохода аграрного предприятия.

Список литературы

- 1. Basu A., Prasad P., Das S.N., Kalam S., Sayyed R.Z., Reddy M.S., Enshasy H.E. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects // Sustainability. 2021. Vol. 13, Is. 3. P. 1–20. DOI: 10.3390/su13031140.
- 2. Завалин А.А., Алферов А.А., Чернова Л.С. Ассоциативная азотфиксация и практика применения биопрепаратов в посевах сельскохозяйственных культур // Агрохимия. 2019. № 8. С. 83–96. DOI: 10.1134/S0002188119080143.
- 3. Тихонович И.А., Завалин А.А. Перспективы использования азотфиксирующих и фитостимулирующих микроорганизмов для повышения эффективности агропромышленного комплекса и улучшения агроэкологической ситуации РФ // Плодородие. 2016. № 5. С. 28–32.
- 4. Максимов И.В., Веселова С.В., Нужная Т.В., Сарварова Е.Р., Хайруллин Р.М. Стимулирующие рост растений бактерии в регуляции устойчивости растений к стрессовым факторам // Физиология растений. 2015. Т. 62. № 6. С. 763—775. DOI: 10.7868/S0015330315060111.
- 5. Ha-Tran D.M., Nguyen T.T.M., Hung S.H., Huang C.C., Huang E. Roles of plant growth promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review // International Journal of Molecular Sciences. 2021. Vol. 22, Is. 6. P. 1–38. DOI: 10.3390/ijms22063154.
- 6. Тужилина С.В., Савин А.П. Виды фацелии и их роль в кормовой базе пчеловодства // Пчеловодство. 2022. № 2. С. 19–21. URL: https://elibrary.ru/item.asp?id=48066663 (дата обращения: 10.08.2025). EDN: ZJZRCR.
- 7 Филонов М., Огуречная трава (Бораго) // Пчеловодство. 2022. № 4. С. 56–57. URL: https://elibrary.ru/item. asp?id=48369131 (дата обращения: 24.08.2025). EDN: MX-ONAS.
- 8. Царенко В.П., Воробейков Г.А., Ефремова М.А. Полевые и вегетационные исследования по агрохимии и фитофизиологии. СПб.: Лань, 2023. 192 с. [Электронный ресурс]. URL: https://e.lanbook.com/book/367283 (дата обращения: 26.06.2025). ISBN 978-5-507-48170-5.
- 9. Лебедев В.Н. Минеральное питание, рост и продуктивность горчицы белой (*Sinapis alba* L.) при инокуляции семян ассоциативными ризобактериями: дис. ... канд. сельхоз. наук. Санкт-Петербург Пушкин, 2008. 218 с. [Электронный ресурс]. URL: https://viewer.rsl.ru/ru/rsl01004170677 (дата обращения: 26.06.2025). EDN: NQHKIP.
- 10. Ибатуллина Р.П., Алимова Ф.К., Кожемяков А.П., Крошечкина И.Ю., Менликиев Ф.М. Рекомендации по применению биологических препаратов ООО «НПИ «Биопрепараты» в растениеводстве, кормопроизводстве и животноводстве. Казань: ООО «Центр инновационных технологий», 2017. 136 с. [Электронный ресурс]. URL: https://www.elibrary.ru/download/elibrary_35323376_24733712.pdf (дата обращения: 26.06.2025). ISBN 978-5-93962-856-3.
- 11. Лебедев В.Н., Ураев Г.А. Статистический анализ в биологии с использованием Excel. Ч. 1. СПб.: Изд-во РГПУ им. А.И. Герцена, 2017. 51 с. ISBN 978-5-8064-1478-7.
- 12. Ураев Г.А., Лебедев В.Н. Способы оценивания рисков аграрных предприятий // Управление рисками в экономике: проблемы и решения: труды III научно-практической конференции с международным участием (Санкт-Петербург, 27–28 ноября 2017 г.). СПб.: ФГАОУ ВО «Санкт-Петербург, ский политехнический университет Петра Великого», 2017. С. 266–273. [Электронный ресурс]. URL: https://elibrary.ru/item.asp?id=32693592 (дата обращения: 13.10.2025). EDN: YTXDSP.
- 13. Панин Е.В., Высоцкая Е.А. Биопродуктивность фацелии в различные фазы вегетации // Экологический вестник Северного Кавказа. 2025. Т. 21. № 1. С. 53–60. URL: http://ecokavkaz.ru/media/docs/2025/21-1-8.pdf (дата обращения: 26.06.2025). EDN: OWRTLR.

- 14. Чеботарь В.К., Щербаков А.В., Щербакова Е.Н., Масленникова С.Н., Заплаткин А.Н., Мальфанова Н.В. Эндофитные бактерии как перспективный биотехнологический ресурс и их разнообразие // Сельскохозяйственная биология. 2015. Т. 50. № 5. С. 648–654. DOI: 10.15389/ agrobiology.2015.5.648rus.
- 15. Воробейков Г.А., Лебедев В.Н., Ураев Г.А. Сравнительная оценка влияния биопрепаратов и минеральных удобрений на рост и продуктивность горчицы сарептской (*Brassica juncea* Czern.) // Пермский аграрный вестник. 2022. № 1 (37). С. 14–21. DOI: 10.47737/2307-2873_2022_37_14.
- 16. Завалин А.А., Соколов О.А., Шмырева Н.Я. Азот в агросистеме на черноземных почвах. М.: Российская академия наук, 2018. 180 с. [Электронный ресурс]. URL: https://new.ras.ru/upload/iblock/3ac/3spp72vtcbcwcel-r456i9779td3axbu9.pdf (дата обращения: 26.06.2025). ISBN 978-5-906906-79-3.
- 17. Самсонова Н.Е. Основы минерального питания растений и технологий применения удобрений. Смоленск: ФГБОУ ВО Смоленская ГСХА, 2021. 256 с. [Электронный ресурс]. URL: https://e.lanbook.com/book/222806 (дата обращения: 26.06.2025).

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

СТАТЬИ

УДК 911.372 DOI 10.17513/use.38437

ГЕОДЕМОГРАФИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ И РАЗМЕЩЕНИЯ СЕЛЬСКОГО НАСЕЛЕНИЯ В ПРИВОЛЖСКОМ ФЕДЕРАЛЬНОМ ОКРУГЕ (2013–2023 ГГ.)

Гайсин Р.И.

ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Россия, Казань, e-mail: gaisinrenat@bk.ru

Данное исследование посвящено анализу геодемографических аспектов, влияющих на развитие и размещение сельского населения в условиях прогрессирующего сокращения его численности на территории отдельных субъектов Приволжского федерального округа. Целью исследования является анализ геодемографических аспектов изменения численности сельского населения на территории Приволжского федерального округа. Методологическую основу исследования составляет демографический анализ, в работе которого использованы методы сравнительного, статистического, территориального анализа и оценки геодемографической ситуации субъектов Приволжского федерального округа. Проведен сравнительный анализ статистических материалов, характеризующих динамику численности сельского населения Приволжского федерального округа и его субъектов, демонстрирующих устойчивую тенденцию естественной и миграционной убыли за исследуемый период. Выявлены некоторые геодемографические аспекты, влияющие на развитие и размещение сельского населения на территории субъектов Приволжского федерального округа: природно-географические, социально-экономические, демографические и экологические. В работе выявлены основные причины сокращения численности сельского населения в отдельных субъектах округа, зависящие в основном от их экономического состояния и развития социальной инфраструктуры сельской местности. Результаты исследования геодемографических аспектов развития и размещения сельского населения на территории Приволжского федерального округа могут быть учтены региональными органами власти при разработке планов демографического развития с учетом особенностей субъектов.

Ключевые слова: экономическая география, геодемография, сельское население, размещение, экология, Приволжский федеральный округ

GEODEMOGRAPHIC ASPECTS OF DEVELOPMENT AND PLACEMENT OF RURAL POPULATION IN THE VOLGA FEDERAL DISTRICT (2013–2023)

Gaysin R.I.

Kazan (Volga Region) Federal University, Russia, Kazan, e-mail: gaisinrenat@bk.ru

This study analyzes geodemographic aspects influencing the development and distribution of the rural population amidst its progressive decline in certain constituent entities of the Volga Federal District. The objective of the study is to analyze geodemographic aspects of rural population change in the Volga Federal District. The methodological basis of the study is demographic analysis and the methods of comparative statistical and territorial analysis and assessment of the geodemographic situation of the subjects of the Volga Federal District are used. A comparative analysis of statistical materials characterizing the dynamics of the rural population of the Volga Federal District and its subjects, demonstrating a stable trend of natural and migration loss for 2013-2023, was carried out. Some geodemographic aspects influencing the development and distribution of the rural population in the territory of the subjects of the Volga Federal District are revealed: natural-geographical, socio-economic, demographic and environmental. The work identifies the main reasons for the decline in the rural population in individual subjects of the district, which depend mainly on their economic status and the development of social infrastructure in rural areas. The results of the study of geodemographic aspects of the development and placement of the rural population in the Volga Federal District can be taken into account by regional authorities when developing demographic development plans, taking into account the characteristics of the subjects.

 $Keywords: economic geography, geodemography, rural population, placement, ecology, Volga\ Federal\ District$

Введение

В современных условиях уделяется значительное внимание изучению геодемографических аспектов, влияющих на развитие и размещение сельского населения отдельных территорий страны, в том числе субъектов Приволжского федерального округа (ПФО). На развитие размещения сельского

населения оказывают большое влияние природно-географические, социально-экономические, экологические и демографические факторы, а также качество окружающей среды (в условиях ухудшения социально-экономической и экологической обстановки в сельской местности в различных субъектах ПФО). Анализ статистических матери-

алов по численности сельского населения за 10 лет показывает, что с 2013 по 2023 г. изменение динамики демографических показателей в ПФО и его отдельных субъектах свидетельствует о постепенном снижении рождаемости и увеличении смертности населения, и в результате естественный прирост сельского населения имеет отрицательные показатели.

В связи с реформированием экономики в стране во многих сельских муниципальных образованиях (поселениях) с началом XXI в. закрылись сельскохозяйственные предприятия и учреждения социальной инфраструктуры. В некоторых сельских населенных пунктах наблюдается большое количество заброшенных производственных объектов бывших сельскохозяйственных предприятий, увеличилось количество необрабатываемых площадей сельскохозяйственных земель, что способствует ухудшению социально-экологической обстановки в сельской местности. Результатом этого является интенсивный миграционный отток трудоспособного сельского населения в города. Поэтому во всех субъектах ПФО наблюдается усиление урбанизационных процессов, которые способствуют уменьшению численности населения в сельской местности. В работе раскрываются некоторые геодемографические аспекты: природно-географические, социально-экономические, демографические и экологические, влияющие на динамику численности сельского населения в субъектах ПФО.

Цель исследования — анализ геодемографических аспектов изменения численности сельского населения на территории Приволжского федерального округа.

Материалы и методы исследования

Информационной основой исследования послужили статистические данные Территориального органа Федеральной службы государственной статистики (Росстата) и официальные статистические сборники о численности сельского населения Приволжского федерального округа в разрезе субъектов и муниципальных образований различного ранга и людности за период с 2013 по 2023 г. Автором проведен анализ статистических данных, характеризующих динамику численности сельского населения ПФО и его субъектов, демонстрирующий устойчивую тенденцию естественной и миграционной убыли. Проведен сравнительный анализ изменения количества сельских населенных

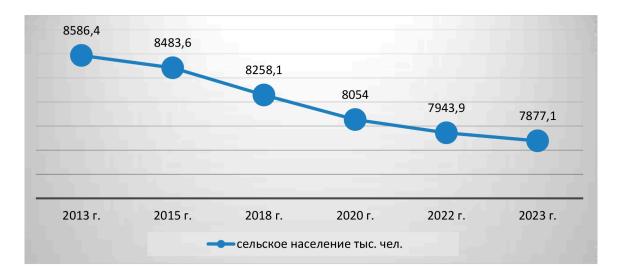
пунктов по республикам ПФО по данным ВПН 2010 и 2020 гг., характеризующийся общим снижением числа СНП по республикам, а также увеличением числа СНП «без населения».

Результаты исследования и их обсуждение

В настоящее время в России, в частности в Приволжском федеральном округе, уделяется большое внимание развитию и размешению сельского населения, которое направлено на создание благоприятных условий для повышения качества жизни жителей сельской местности, стимулирования социально-экономического роста в регионах и снижения диспропорций в территориальном развитии [1, с. 73]. Выделяются основные проблемы, которые существуют в развитии и размещении сельского населения: демографические - особенно естественное движение и миграция населения из сельских районов в города; экономические - снижение эффективности сельского хозяйства; социальные – недостаточное развитие социальной инфраструктуры; экологические – загрязнение окружающей среды, что приводит к деградации экосистем и ухудшению условий жизни в сельской местности и т.д. [1, с. 76; 2, с. 27; 3]. В исследовании автор рассматривает некоторые аспекты развития и размещения сельского населения в ПФО и его субъектах.

В ходе исследования автором проведен анализ статистических данных по численности сельского населения в субъектах ПФО в целях определения динамики изменения численности за 10 лет, с 2013 по 2023 г. (табл. 1).

Как видно из табл. 1, сельское население по Приволжскому федеральному округу с 2013 по 2023 г. снизилось на 709,3 тыс. чел., или на 8,27% относительно общей численности сельского населения. По численности сельского населения на 1-м месте находится Республика Башкортостан, на 2-м месте Республика Татарстан, на 3-м – Оренбургская область. Наименьшая численность сельского населения наблюдалась в 2023 г. в Республике Марий-Эл (14-е место), в Кировской области (13-е место), в Ульяновской области (12-е место). Анализ показателей динамики численности сельского населения показывает, что в 2023 г. в 12 субъектах ПФО была отрицательной, а в двух субъектах положительной: в Республике Татарстан, где рост численности составляет +14,3 тыс. чел., в Самарской области +12,5 тыс. чел.


Таблица 1 Изменение численности сельского населения субъектов Приволжского федерального округа с 2013 по 2023 г. [4; 5]

				Насе	еление (т	ыс. чел.)		
<u>№</u> п/п	Название субъектов ПФО	2013	2015	2018	2020	2022	2023	Разница с 2010 по 2023 г.
1	Республика Башкортостан	1575,2	1560,1	1535,7	1502,8	1535,2	1519,9	-55,3
2	Республика Марий Эл	244,3	239,2	228,9	219,7	209,6	206,8	-37,5
3	Республика Мордовия	317,9	313,7	294,6	280,1	280,9	277,9	-40,0
4	Республика Татарстан	919,5	915,3	901,9	899,7	930,3	933,8	+14,3
5	Удмуртская Республика	528,8	522,9	515,2	504,7	493,8	491,0	-37,8
6	Чувашская Республика	496,7	486,6	457,4	438,9	418,7	413,8	-82,9
7	Пермский край	653,1	645,7	632,4	621,7	610,0	604,0	-49,1
8	Кировская область	329,5	318,5	293,4	272,6	246,7	240,7	-88,8
9	Нижегородская область	684,4	674,1	659,5	641,7	616,3	610,8	-73,6
10	Оренбургская область	809,9	802,6	784,1	760,8	739,1	731,9	-78,0
11	Пензенская область	438,5	432,3	416,1	398,8	389,0	384,7	-53,8
12	Самарская область	631,9	632,1	640,5	639,4	644,0	644,4	+12,5
13	Саратовская область	627,4	618,5	593,2	581,7	558,0	549,1	-78,3
14	Ульяновская область	328,8	322,2	304,9	291,2	271,9	267,9	-60,9
	Всего по ПФО	8586,4	8483,6	8258,1	8054,0	7943,9	7877,1	-709,3

Источник: составлено авторами на основе:

1. Доклад о результатах проведенного мониторинга состояния социально-экономического развития сельских территорий в 2023 г. 32 с. [Электронный ресурс]. URL: https://mcx.gov.ru/upload/iblock/b0b/pw8tnifok6w7wlvptffuib1l0nlmuj0c.pdf (дата обращения: 18.04.2025).

Приволжский федеральный округ: 2021 г. – точка отсчета для новых трендов Серия: Аналитический бюллетень ПФО / Под общ. ред. докт. экон. наук Овчинниковой. Екатеринбург, 2022. 34 с. [Электронный ресурс]. URL: https://uiec.ru/wp-content/uploads/2022/07/Бюллетень_2022_ПрФО_el-1.pdf (дата обращения: 12.04.2025).

Изменение численности сельского населения ПФО с 2013 по2023 г. Источник: Доклад о результатах проведенного мониторинга состояния социально-экономического развития сельских территорий в 2023 г. 32 с. [Электронный ресурс]. URL: https://mcx.gov.ru/upload/iblock/b0b/pw8tnifok6 w7wlvptffuib1l0nlmuj0c.pdf (дата обращения: 18.04.2025).

Таблица 2

Изменение численности сельского населения по субъектам Приволжского федерального округа за 2023 г. (чел.)

11	Численность	I	Изменения за 2023 г. (+,-)				
Наименование территории	населения на начало 2023 г.	Общий прирост	Естественный прирост	Миграционный прирост	населения на начало 2024 г.		
Республика Башкортостан	1535231	-15298	-7197	-8101	1519933		
Республика Марий Эл	209661	-2849	-1466	-1383	206812		
Республика Мордовия	280985	-3100	-3127	27	277885		
Республика Татарстан	930269	3584	-4817	8401	933853		
Удмуртская Республика	493804	-2767	-2059	-708	491037		
Чувашская Республика	418726	-4901	-4002	-899	413825		
Пермский край	610075	-6028	-3318	-2710	604047		
Кировская область	246683	-5945	-3306	-2639	240738		
Нижегородская область	616282	-5479	-6030	551	610803		
Оренбургская область	739152	-7214	-4152	-3062	731938		
Пензенская область	389050	-4285	-3991	-294	384765		
Самарская область	644024	424	-3999	4423	644448		
Саратовская область	558039	-8928	-4934	-3994	549111		
Ульяновская область	271920	-3992	-3020	-972	267928		
Всего по ПФО	7943901	-66778	-55418	-11360	7877123		

Источник: составлено авторами на основе: Доклад о результатах проведенного мониторинга состояния социально-экономического развития сельских территорий в 2023 г. 32 с. [Электронный ресурс]. URL: https://mcx.gov.ru/upload/iblock/b0b/pw8tnifok6w7wlvptffuib1l0nlmuj0c.pdf (дата обращения: 18.04.2025).

Наибольшее сокращение численности сельского населения в 2023 г. наблюдается в областях: в Кировской на 88,8 тыс. чел., в Саратовской на 78,3 тыс. чел., в Оренбургской на 78,0 тыс. чел., в Нижегородской на 73,6 тыс. чел., в республиках: в Чувашской Республике на 82,9 тыс. чел., в Республике Башкортостан на 55,3 тыс. чел. и в Пермском крае на 49,1 тыс. чел. [4]. Основными причинами снижения численности сельского населения в ПФО являются: снижение рождаемости и увеличение смертности среди сельского населения; миграционный отток сельского населения в города из-за безработицы в сельской местности.

Проведенный анализ численности сельского населения в субъектах округа показывает, что идет постепенное сокращение численности сельского населения за исследуемый период (2013—2023 гг.). На рисунке видно, что по округу сокращение за 10 лет составило709, 3 тыс. чел. [4].

В ходе исследования был проведен анализ изменения численности сельского населения по субъектам ПФО за 2023 г., где учи-

тывались показатели естественного и миграционного прироста (табл. 2).

Анализ табл. 2 показывает, что общий прирост сельского населения в 2023 г. составляет -66778 чел. Из 14 субъектов по-прежнему только два региона, Республика Татарстан (3584 чел.) и Самарская область (424 чел.), имеют положительную динамику, а остальные 12 субъектов имеют отрицательную. Общий прирост сельского населения (-66778 чел.) состоит в том числе из естественного прироста (-55418 чел.) и миграционного прироста (-11360 чел.). Однако по естественному приросту сельского населения все 14 субъектов в 2023 г. имеют отрицательную динамику, особенно выделяется Республика Башкортостан (-7197 чел.), Нижегородская область (-6030 чел.), Саратовская область (-4934 чел.) Основной причиной сокращения численности сельского населения

¹ Доклад о результатах проведенного мониторинга состояния социально-экономического развития сельских территорий в 2023 г. 32 с. [Электронный ресурс]. URL: https://mcx.gov.ru/upload/iblock/b0b/pw8tnifok6w7wlvptffuib1l0nlmuj0c.pdf (дата обращения: 18.04.2025).

является сокращение рождаемости, что, в свою очередь, приводит к увеличению количества людей пожилого возраста.

Анализ статистических данных 2023 г. по естественному приросту сельского населения показывает, что из 14 субъектов только 4 имеют положительную динамику: Республика Татарстан 8401 чел., Самарская область 4423 чел., Нижегородская область 551 чел. и Республика Мордовия 27 чел. Наибольшая миграционная убыль сельского населения наблюдается в Республике Башкортостан -8101 чел., в Саратовской области -3994 чел., в Оренбургской области -3062 чел. и в Пермском крае -2710 чел.²

Таким образом, в ПФО наблюдается высокая естественная и миграционная убыль сельского населения. Причинами сокращения сельского населения являются: естественное сокращение рождаемости и рост смертности, увеличение умерших среди людей пожилого возраста; миграционный отток экономически активного сельского населения в города; психологический настрой (в сознании людей укрепилось представление о тяжелой жизни в селе) [6]; отсутствие элементов социальной инфраструктуры (школы, учреждения здравоохранения) [7]; отставание процессов урбанизации в отдельных субъектах, где наблюдается высокий удельный вес сельского населения, - в Республике Башкортостан, в Оренбургской области и в Чувашской Республике.

Сравнительный анализ доли (удельный вес) сельского населения в общей численности населения ПФО за 2010, 2018, 2023 гг. показывает, что доля сельского населения ПФО составила в 2018 г. 27,9% (по РФ 25,4%), в 2020 г. 27,7%, в 2023 г. – 27,6% (по РФ 25,1%) разница за 6 лет составляет 0,3 %. Так, в 2018 г. наибольший удельный вес сельского населения наблюдался в Оренбургской области – 39,7%, в Республике Башкортостан – 37,8%, в Чувашии – 37,0%, в Мордовии – 36,6%, и наименьший удельный вес был в Самарской области – 20,2 %, в Нижегородской области – 20,4 % и в Кировской области – 22,7 %, а в 2023 г. наибольший удельный вес сельского населения наблюдался в Оренбургской области – 40,0%, в Республике Башкортостан – 37,4%, в Республике Мордовия – 36,3%, и наименьший удельный вес в Нижегородской области – 20,0%, в Самарской области -20,6%, в Кировской области -21,3%, отсюда видно, что наблюдаются определенные изменения^{3,4,5} [4; 8].

Проведенный анализ размещения сельского населения показывает, что значимым фактором в размещении являются природные условия. Значительную часть территории округа в основном занимают равнины, а в восточных регионах преобладает горная местность, особенно в Пермском крае, в Республике Башкортостан, Оренбургской области. В округе имеются благоприятные природно-климатические и социально-экономические условия для активной жизнедеятельности людей в сельской местности, поэтому природно-географическая среда является необходимым условием существования, развития и размещения сельского населения. При этом природа и общество тесно взаимосвязаны и взаимодействуют при активной роли человека, поэтому в современном обществе постепенно меняются потребности и возможности использования природной среды для сельского расселения [1, с. 77; 9, с. 105; 10, с. 170]. В настоящее время в сельской местности, на многих ее территориях, происходит сокращение площадей сельскохозяйственных угодий, в том числе пашни, что негативно сказывается на уровне производства сельскохозяйственной продукции, а также происходит ухудшение экологической ситуации в результате интенсивной антропогенной деятельности человека. В связи с этим есть необходимость в выявлении основных причин ухудшения эколого-географического положения территории, изучении их происхождения. На каждом территориальном уровне (поселение, муниципальный район, республика, область, край) формируется определенная эколого-географическая ситуация, зависящая в основном от изучаемых аспектов: природно-географического, социально-экономического и состояния окружающей среды. Выделяют ландшафтно-экологические, эколого-экономические, социально-экологические ситуации, отражающие состояние экономических, социальных, геодемографических структур территории в их эколого-ге-

² Доклад о результатах проведенного мониторинга состояния социально-экономического развития сельских территорий в 2023 г. 32 с. [Электронный ресурс]. URL: https://mex.gov.ru/upload/iblock/b0b/pw8tnifok6w7wlvptffuib1l0nlmu j0c.pdf (дата обращения: 18.04.2025)..

³ Там же.

 $^{^4}$ Приволжский федеральный округ: 2021 г. — точка отсчета для новых трендов Серия: Аналитический бюллетень ПФО / Под общ. ред. докт. экон. наук Овчинниковой. Екатеринбург, 2022. 34 с. [Электронный ресурс]. URL: https://uiec.ru/wp-content/uploads/2022/07/Бюллетень_2022_ПрФО_el-1. pdf (дата обращения: 12.04.2025).

⁵ Регионы России. Социально-экономические показатели. 2021. Стат. сб. / Росстат. М., 2021. 1114 с. [Электронный ресурс]. URL: https://rosstat.gov.ru/bgd/regl/b21_14p/Main.htm (дата обращения: 15.03.2025).

ографическом аспекте [11–13]. Все эти перечисленные типы эколого-географической ситуации геодемографической обстановки можно использовать при характеристике экологического, демографического, экономического и природно-географического состояния муниципальных районов (округов), сельских поселений, сельскохозяйственных предприятий и организаций в размещении (расселении) сельского населения субъектов ПФО, которые определяются конкретными параметрами применительно к отдельным сельским территориям⁶ [1, с. 127].

В современных условиях экологические компоненты включают уровень потенциала конкретной сельской территории и степень их использования, эколого-экономический ущерб из-за экологического загрязнения, земельные налоги, плата за землю и др. Социально-экологические параметры определяют условия проживания в данных эколого-географических условиях сельской территории, состояние здоровья сельского населения в изменившихся условиях сельской местности и др.⁷ [1, с. 128; 3; 11]. Таким образом, изучение эколого-географической обстановки сельской территории позволяет охарактеризовать экологическую обстановку, выбрать наиболее благоприятное место проживания, размещение предприятий на территории конкретного сельского поселения, муниципального района (округа), субъекта.

На сегодняшний день под влиянием природно-географических, экономических и социально-демографических процессов происходят некоторые разнонаправленные тенденции развития и размещения сельского населения, происходящие из-за его сокращения [14]. В одних субъектах ПФО происходит заселение территории, уплотнение поселенческой сети, особенно в пригородных муниципальных районах (округах) городов-миллионеров (Казань, Нижний Новгород, Самара, Уфа, Пермь) и в столицах республик (Ижевск, Йошкар-Ола, Саранск, Чебоксары), в областных центрах (Саратов, Пенза, Киров, Оренбург, Ульяновск) и в ряде

крупных городов (Набережные Челны, Тольятти и др.). В отдельных регионах ПФО, наоборот, происходит ее измельчение и разрежение, в результате в одних сельских населенных пунктах увеличивается людность, а в других, наоборот, происходит уменьшение сельского населения. Данные процессы усилились особенно в конце 1990-х гг. после закрытия или преобразования бывших колхозов, совхозов и создание вместо них крупных фермерских хозяйств, а также перевод аграрного сектора на индустриальную основу с образованием крупных агрохолдингов во всех субъектах ПФО.

Территориально-производственная организация сельского хозяйства тесно связана с территориально-поселенческой организацией сельского населения. В аграрном секторе из-за закрытия многих сельскохозяйственных предприятий произошли большие преобразования. Изменились роли и значения многих сельских населенных пунктов в системе разделения труда, процессы которых также отражаются на формах территориальной организации сельского населения во всех субъектах ПФО.

Существующая в настоящее время сеть сельских населенных пунктов сформировалась исторически в процессе хозяйственного освоения и заселения обширных территории. В своей работе С.А. Ковалев выделяет механизмы влияния природной среды на сельское расселение как две формы: влияние природной среды на региональные особенности хозяйства и через это на расселение людей; влияние природных условий на выбор местоположения селений и площадок для них, на планировку, конструктивные приемы и материалы строительства⁸. Однако обе эти формы влияния природных условий на сельское расселение связаны между собой и имеют свою некоторую специфику, зависящую от природно-географических факторов конкретных территорий [9, с. 105].

Для сельских поселений также много значит их экономико-географическое положение, которое выражается как положение относительно хозяйственной территории, земельных угодий, составляющих экономическую основу существования данного населенного пункта и как положение относительно других объектов, населенных пунктов, удаленность и близость от магистральных дорог, пригородного положения и т.д.

⁶ Социально-демографический портрет России: по итогам Всеросс. переписи населения 2010 года / Федеральная служба госстатистики. М.: ИНЦ «Статистика России», 2012. 183 с. [Электронный ресурс]. URL: https://rosstat.gov.ru/free_doc/new_site/perepis2010/croc/documents/portret-russia. pdf (дата обращения: 11.05.2025).

⁷ Приволжский федеральный округ: 2022 год – год преодоления вызовов. Серия: Аналитический бюллетень ПФО / Под общ. ред. докт. экон. наук Ю.Г. Лавриковой, А.В. Овчинниковой. Екатеринбург, 2023. 34 с. [Электронный ресурс]. URL: https://uiec.ru/wp-content/uploads/2023/04/Бюллетень 2022 ПФО.pdf (дата обращения: 12.03.2025).

⁸ Регионы России. Социально-экономические показатели. 2023. Стат. сб. / Росстат. М., 2023. 1126 с. [Электронный ресурс]. URL: http://ssl.rosstat.gov.ru/storage/mediabank/Reg_Rus Pokaz 2023.htm (дата обращения: 18.04.2025).

Проведенный автором анализ показывает, что сельское население по территории ПФО и по его субъектам размещено неравномерно. Так, в 2020 г. в сельской местности ПФО находились: муниципальных районов 455, из них наибольшее количество: в Башкортостане – 54, в Нижегородской области – 47, в Татарстане -43, в Пермском крае -42, в Кировской области – 39 и наименьшее количество в Марий Эл – 14, в Ульяновской области – 21, в Чувашии – 21, в Мордовии – 22; сельских поселений 5420, из них наибольшее количество: в Татарстане – 906, в Башкортостане – 818, в Оренбургской области – 559 и наименьшее количество в Ульяновской области – 112; сельских населенных пунктов (СНП) – 34042, из них наибольшее количество находится в Нижегородской области – 4762, в Башкортостане – 4532, в Кировской области – 4320, в Пермском крае – 3644 и т.д. [4].

Был проведен сравнительный анализ количества сельских поселений и СНП за 2010 и 2020 гг. (по результатам двух ВПН – 2010, 2020 гг.) по республикам П Φ О: в Башкортостане, в Марий Эл, в Мордовии, в Татарстане, в Удмуртии и в Чувашии по итогам всероссийской переписи населения: в 2010 г. всего 2790 сельских поселений и 14133 СНП, а в 2020 г. всего 2614 сельских поселений и СНП – 14125, отсюда видно уменьшение количества сельских поселений в республиках за 10 лет на 176 (в Мордовии на 124, в Татарстане на 34 и др.), а количество СНП сократилось всего на 8 и их количество почти не изменилось, однако в 2020 г. увеличилось количество СНП без населения до 682, особенно их количество увеличилось в Удмуртии (191), в Башкортостане (154), в Мордовии (108), в Марий Эл (104), в Татарстане (102), в Чувашии (23) [4; 12]. Эти процессы в основном связаны с оттоком сельского населения в города или в другие более крупные промышленно развитые сельские поселения, а также с уменьшением числа родившихся и с увеличением количества умерших среди людей пожилого возраста в сельской местности. Населенные пункты «без населения» не новый феномен для России, однако причины его возниконовения изучаются до сих пор, и это понятие разнообразно для разных регионов страны. К этой категории могут быть отнесены совершенно не похожие друг на друга места, в разной степени сохранившие признаки населенных пунктов: от постоянно обитаемых деревень, где проживают люди, зарегистрированные в других населенных пунктах,

до мест, где не осталось никаких построек и только прослеживаются бывшие домовые места [13; 15]. Поэтому в субъектах ПФО исключать из списков данный тип не торопятся в силу неоднородности территории и возможности использования их для нового заселения по программам реализуемым для многодетных семей, а также для новых коттеджных поселков и т.д.

Заключение

В работе проанализированы некоторые геодемографические аспекты, влияющие на динамику сельского расселения населения Приволжского федерального округа: природно-географические, социально-экономические, экологические и демографические. Проведен анализ статистических материалов по изменению численности сельского населения в целом в ПФО и по его субъектам, с 2013 по 2023 г. наблюдается постоянное сокращение сельского населения и доли сельского населения в общей численности населения округа. Выявленные геодемографические аспекты развития и размещения сельского населения могут быть учтены при прогнозировании региональной демографической политики отдельных территорий.

Список литературы

- 1. Рубцов В.А., Байбаков Э.И., Рожко М.В., Биктимиров Н.М., Булатова Г.Н., Мустафин М.Р. Влияние социально-экономических факторов на население и систему расселения Республики Татарстан. Казань: Отечество, 2018. 192 с. [Электронный ресурс]. URL: https://repository.kpfu.ru/eng/?p_id=193191&p_lang=2 (дата обращения: 19.08.2025) ISBN 978-5-9222-1280-9.
- 2. Габдрахманов Н.К., Рубцов В.А., Ахунзанява Г.Р. Геодемографический потенциал Республики Татарстан. Казань: Отечество, 2014. 124 с. [Электронный ресурс]. URL: https://repository.kpfu.ru/eng/?p_id=91927&p_lang=2 (дата обращения: 19.08.2025) ISBN 978-5-9222-0911-3.
- 3. Былина С.Г. Демографические тенденции развития сельских территорий Приволжского федерального округа (2014–2023 гг.) // Региональные агросистемы: экономика и социология. 2023. № 4. С. 83–95. URL: http://perиональныеагросистемы.pф/index.php/ras/article/view/425 (дата обращения: 12.08.2025).
- 4. Shtanchaeva M.R., Zyablova O.V., Denmukhametov R.R. The role of social infrastructure in non-urbanized territories development // The Social Sciences. 2015. Т. 10. № 7. С. 2102—2105. URL: https://repository.kpfu.ru/?p_id=126376 (дата обращения: 01.08.2025).
- 5. Рубцов В.А., Рожко М.В., Биктимиров Н.М. Межрегиональные различия в показателях рождаемости сельского населения Российской Федерации // Геополитика и экогеодинамика регионов. 2023. Т. 9 (19). Вып. 3. С. 26–32. URL: https://repository.kpfu.ru/?p_id=293001 (дата обращения: 29.08.2025).
- 6. Кондаков К.С., Васильева Е.В., Панченко В.В., Бочкарева Ю.В., Башинская О.С., Гафуров Р.Р. Развитие сельских территорий Российской Федерации в новых экономических реалиях: проблемы и перспективы // Вестник Алтайской академии экономики и права. 2022. № 11–1. С. 97–103. URL:

https://vaael.ru/ru/article/view?id=2536 (дата обращения: 29.08.2025).

- 7. Карачурина Л.Б., Мкртчян Н.В. Базовая социальная инфраструктура в населенных пунктах России и динамика численности их населения // Социологические исследования. 2025. № 5. С. 109–124. DOI: 10.31857/S0132162525050107.
- 8. Балабан М.О. Типология регионов и муниципалитетов России по динамике численности населения в 1959—2021 гг. // Региональные исследования. 2024. № 4. С. 24–37. DOI: 10.5922/1994-5280-2024-4-2.
- 9. Ковалев С.А. Сельское расселение (географическое исследование) / Под. ред. проф. Ю.Г. Саушкина. М.: Изд-во Московского ун-та, 1963. 371 с. [Электронный ресурс]. URL: https://search.rsl.ru/ru/record/01006173538 (дата обращения: 10.04.2025).
- 10. Воронин Б.А., Воронина Я.В., Карпухин М.Ю. [и др.]. Экологические и кадровые проблемы сельских территорий и городских поселений: монография. Екатеринбург: Изд-во Уральского ГАУ, 2022. 236 с. [Электронный ресурс]. URL: https://repository.urgau.ru/images/Monografii/ekol_kadr_probl_2023.pdf (дата обращения: 11.03.2025)
- 11. Сафиуллин Р.Г. Геодемографический фактор развития регионов России: реальность и перспективы // Фундаментальные исследования. 2019. № 12-1. С. 181–185. URL:

- https://fundamental-research.ru/ru/article/view?id=42644 (дата обращения: 07.03.2025). DOI: 10.17513/fr.42644.
- 12. Рубцов В.А., Габдрахманов Н.К., Рожко М.В. Индекс демографической ситуации регионов Приволжского федерального округа // Вестник Удмуртского университета. 2014. № 6–1. С. 150–154. URL: https://cyberleninka.ru/article/n/indeks-demograficheskoy-situatsii-regionov-privolzhskogo-federalnogo-okruga.pdf (дата обращения: 11.03.2025).
- 13. Ткаченко А.А. О количестве сельских населенных пунктов в Тверской области // Вестник ТвГУ. Серия «География и Геоэкология». 2017. № 3. С. 6–16. URL: https://journal.tversu.ru/index.php/geo/article/view/216 (дата обращения: 11.03.2025).
- 14. Егоров Д.О. Пространственное сжатие и поляризация сельского пространства Республики Татарстан на фоне депопуляции населения // Региональные исследования. 2020. № 4. С. 32–45. URL: https://smolgu.ru/science/%D0%A0%D0%98_2020_%E2%84%964_70_3.pdf (дата обращения: 29.08.2025).
- 15. Мухаметов А.Р. Некоторые особенности географии сельского расселения и населенных пунктов района Предкамья республики Татарстан // Успехи современного естествознания. 2019. № 10. С. 79–83. URL: https://natural-sciences.ru/ru/article/view?id=37217 (дата обращения: 24.08.2025).

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

УДК 504.05 DOI 10.17513/use.38438

ЗАГРЯЗНЕНИЕ ТЯЖЕЛЫМИ МЕТАЛЛАМИ ПОЧВ В ЗОНЕ ВЛИЯНИЯ ЧЕРЕПОВЕЦКОГО МЕТАЛЛУРГИЧЕСКОГО КОМБИНАТА

Репина В.И., Недбаев И.С. ORCID ID 0000-0003-0407-7585

ФГБОУ ВО «Санкт-Петербургский государственный университет», Россия, Санкт-Петербург, e-mail: i.nedbaev@spbu.ru

В работе проведено исследование загрязнения тяжелыми металлами почв в зоне влияния Череповецкого металлургического комбината (ПАО «Северсталь») — одного из крупнейших предприятий черной металлургии в России. Район исследования включал в себя территории, преимущественно расположенные за пределами Череповца. Проведены лабораторные анализы на определение содержания подвижных форм тяжелых металлов (Мп, Аs, Cd, Cu, Hg, Ni, Pb, Zn, Fe, V), уровня кислотности в почвах на базе Санкт-Петербургского государственного университета (СПбГУ). Если оценивать вертикальное распределение в профиле почв, то выраженных вертикальных градиентов актуальной кислотности почв не образуется. Пространственно-временной анализ показал, что за период с 2018 по 2024 г. реакция почвенной среды изменилась со слабокислой до нейтральной вследствие осаждения щелочной пыли предприятия. Установлено, что в зоне влияния Череповецкого металлургического комбината (ЧерМК) на расстоянии до 10 км отмечается повышенное содержание подвижных форм микроэлементов (Cd, Ni, Mn, Pb, Cu, V, Zn) по сравнению с почвами, расположенными вне зоны влияния (разница в 1,4—3,7 раза). Расчет суммарного показателя загрязнения Саета (Zc = 29) относит исследуемый участок к категории умеренно опасных, а показатель суммарного загрязнения с поправочным коэффициентом (Zct = 35) классифицирует его как опасно загрязненный. Выявлены значимые корреляционные связи между Ni, Pb и Cu, что свидетельствует об их совместной аккумуляции из одного источника. Zn проявляет средние корреляции с Pb, Cu, V и Mn, что также говорит о совместном поступлении в почвы.

Ключевые слова: Череповецкий металлургический комбинат, почвы, подвижные формы тяжелых металлов, рН почв

Благодарности: Исследование проведено при использовании оборудования и при поддержке Ресурсного центра «Методы анализа состава вещества» Научного парка СПбГУ.

THE CHEMICAL COMPOSITION OF SOILS WITHIN THE AREA OF THE CHEREPOVETS METALLURGICAL COMBINE INFLUENCE

Repina V.I., Nedbaev I.S. ORCID ID 0000-0003-0407-7585

Saint Petersburg State University, Russia, Saint Petersburg, e-mail: i.nedbaev@spbu.ru

This study investigates the contamination of soils by heavy metals in the impact zone of the Cherepovets steel Plant (PJSC "Severstal") – one of the largest ferrous metallurgy enterprises in Russia. The research area predominantly encompassed territories located outside the city of Cherepovets. Laboratory analyses were performed at Saint Petersburg State University (SPbSU) to determine the content of mobile forms of heavy metals (Mn, As, Cd, Cu, Hg, Ni, Pb, Zn, Fe, V) and soil pH. Assessment of the vertical distribution within the soil profile revealed no pronounced vertical gradients in actual soil acidity. Spatiotemporal analysis showed that between 2018 and 2024, the soil reaction changed from slightly acidic to neutral due to the deposition of alkaline dust from the enterprise. It was found that within the 10-km impact zone of the Cherepovets Metallurgical Plant (CherMK), the concentrations of mobile forms of trace elements (Cd, Ni, Mn, Pb, Cu, V, Zn) were elevated compared to soils outside the influence zone, with differences ranging from 1.4 to 3.7 times. Calculation of the total contamination index according to Saet's method (Zc = 29) classifies the study area as moderately hazardous, while the adjusted total contamination index (Zct = 35) categorizes it as dangerously contaminated. Significant correlations were identified among Ni, Pb, and Cu, indicating their co-accumulation from a common source. Zn showed moderate correlations with Pb, Cu, V, and Mn, suggesting their simultaneous entry into the soils.

Keywords: Severstal Cherepovets steel Plant, soils, mobile forms of heavy metals, soil pH

Acknowledgements: The study was conducted using equipment and with the support of the Resource Center "Methods of Analysis of the Composition of Substances" of the St. Petersburg State University Science Park.

Введение

В условиях интенсивной промышленной деятельности химический состав почв может подвергаться значительным изменениям. Комбинат, основанный в середине XX в., стал одним из крупнейших предприятий черной металлургии в России, производя миллионы тонн стали и чугуна ежегодно [1]. Однако его деятельности сопутствуют выбросы загрязняющих веществ, которые могут негативно влиять на окружающую

среду и состав почвы, что определяет актуальность контроля дальнейших геохимических изменений.

По данным [2] по итогу 2021 г., на Череповецкий металлургический комбинат ПАО «Северсталь» приходится 69% выбросов по области и свыше 90% выбросов по городу.

Цель исследования — оценка загрязнения почв тяжелыми металлами выбросами загрязняющих веществ ЧерМК.

Материалы и методы исследования

Летом 2024 г. проведен полевой этап исследования с отбором почвенных проб по ГОСТ 17.4.4.02-2017 «Охрана природы. Почвы. Методы отбора и подготовки проб химического, бактериологического, гельминтологического анализа» в Череповецком районе Вологодской области. Был выбран метод эталонных площадей. Всего отобрано 50 почвенных проб поверхностного серогумусового (АУ) горизонта почв методом конверта. Дополнительно были заложены 4 разреза для вертикального анализа распределения тяжелых металлов. Местами для этого стали четыре вторичных луга со схожими условиями формирования, без признаков заболоченности, расположенные в разных направлениях от комбината, на землях сельскохозяйственного назначения. Схема расположения пробных площадей приведена на рис. 1.

Исследуемые разрезы представляли собой дерново-подзолистые почвы с подстилкой О мощностью 2—4 см, слабой степенью разложения. Под подстилкой залегал гумусовый горизонт АУ темно-серого или

коричневого цвета, мощностью 3–13 см, с мелкокомковатой структурой и супесчаным или легкосуглинистым гранулометрическим составом. Под ним располагался элювиальный горизонт EL светло-серой окраски, сильно варьирующейся мощностью (от 6–25 до 15–40 см). Переходный субэлювиальный горизонт BEL представлен комбинацией светлых и бурых (темных) фрагментов, различающихся по сложению, гранулометрическому составу и структуре. Ниже прослеживался текстурный горизонт ВТ плотный, бурый, постепенно переходящий в подстилающую породу ВС.

В каждой почвенной пробе были определены: реакция среды (актуальная и потенциальная кислотности) по методу, описанному в [3], содержание подвижных форм тяжелых металлов методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой с помощью спектрометра ICPE-9000 [4]. В ходе работы установлено, что концентрации мышьяка (As) и ртути (Hg) оказались ниже пределов обнаружения использованных аналитических методов (менее 0,020 мг/кг).

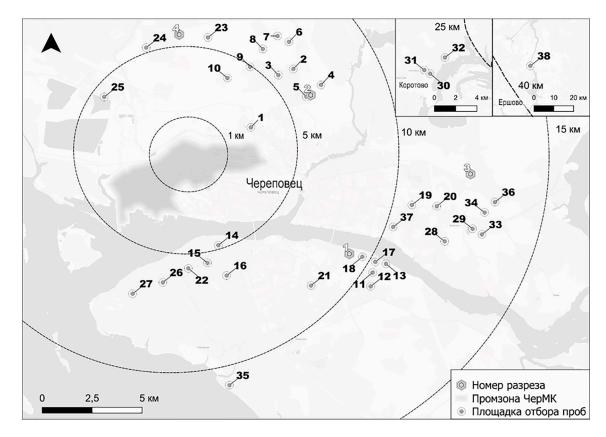


Рис. 1. Схема расположения пробных площадей Источник: составлено авторами по результатам данного исследования

Лабораторные исследования на определение реакции среды проведены в Учебной лаборатории физико-химических методов анализа управления технического обеспечения образовательных программ по направлениям «География», «Геология», «Геоэкология» и «Почвоведение» СПбГУ. Содержание подвижных форм тяжелых металлов определялось на базе аккредитованного Ресурсного центра СПбГУ «Методы анализа состава вещества».

При камеральной обработке использовались методы описательной статистики, критерий проверки выборки на нормальность Колмогорова — Смирнова и корреляционный анализ. Расчет критериев производился в SPSS Statistics.

Результаты исследования и их обсуждение

Вертикальное распределение химических элементов и рН по профилю почв Череповецкого района

Реакцию среды поверхностных горизонтов в четырех полуразрезах можно отнести к нейтральной и близкой к нейтральной. В нижележащих горизонтах значения актуальной кислотности меняются на 0,1–0,5 ед. рН. Несмотря на это, выраженные вертикальные градиенты кислотности не формируются. Вероятнее всего, такое выравнивание рН по глубине разреза обусловлено минеральным составом почв и биологической активностью.

В полуразрезе I (на юго-востоке от комбината) содержание большинства металлов (Cd, Cu, Fe, Mn, Ni, Pb, V, Zn) снижается с глубиной, при этом относительно стабильный рН (7,0–7,1) обеспечивает умеренную подвижность этих элементов. В таком случае это может указывать на воздушный тип загрязнения тяжелыми металлами.

В полуразрезе II (ближайший к ЧерМК и трассе) наблюдается смешанная картина распределения микроэлементов, что может быть связано с различными источниками загрязнения, особенностями миграции и аккумуляции. Содержание Сd, Pb, Mn, Ni и Zn снижается с глубиной аналогично полуразрезу I. Содержание Сu и Fe увеличивается. В условиях слабокислого рН (6,8–6,9) медь и железо могут образовывать комплексные соединения с органическими кислотами, которые транспортируются вниз по профилю. При контакте с минералами иллювиального горизонта (например, глинистыми частица-

ми) Си и Fe осаждаются, создавая локальные максимумы.

В полуразрезе III (на юго-востоке от комбината) наиболее значительный тренд наблюдается для железа (Fe), содержание которого с глубиной возрастает с 46,30 до 139,30 мг/кг, что указывает на активный вынос Fe из верхних горизонтов и его аккумуляцию в иллювиальной части профиля, характерную для подзолистого процесса. Аналогичная, но менее выраженная тенденция характерна для марганца (Mn), содержание которого увеличивается с 3,480 до 26,60 мг/кг, что может быть связано с восстановительной миграцией Mn⁺² в условиях локального оглеения. Содержание цинка (Zn) возрастает в три раза (с 0,377 до 1,424 мг/кг), что, вероятно, обусловлено образованием подвижных органо-минеральных комплексов, транспортирующих Zn в нижние горизонты.

В полуразрезе IV наблюдается неоднозначный характер распределения микроэлементов по глубине. Содержание кадмия (Cd), меди (Cu) и марганца (Mn) снижается, а в последующем горизонте незначительно возрастает, что характерно для дерново-подзолистых почв. Содержание железа (Fe) также уменьшается с глубиной (с 65,90 до 58,10 мг/кг), что может быть связано с выносом из верхних горизонтов в результате подзолистого процесса, однако некоторая аккумуляция в нижнем горизонте может указывать на осаждение в связи с изменением окислительно-восстановительных условий. Никель (Ni) и свинец (Pb) также показывают максимум в среднем слое (0,219 и 0,73 мг/кг соответственно), возможно из-за сорбции глинистыми минералами в субэлювиальном горизонте. Цинк (Zn) сначала резко возрастает (с 0,647 до 1,793 мг/кг), а затем снижается (0,431 мг/кг), что может быть связано с его высокой подвижностью и способностью образовывать комплексы с органическим вешеством.

Сравнение профилей распределения микроэлементов позволяет предположить сочетание атмосферного загрязнения и особенностей почвообразования как основных факторов, определяющих их содержание. Повышенное содержание Zn и Pb в верхних слоях почвы, вероятно, связано с атмосферными выпадениями от деятельности транспорта и промышленного предприятия, а также с их аккумуляцией в верхних горизонтах, богатых органическим веществом.

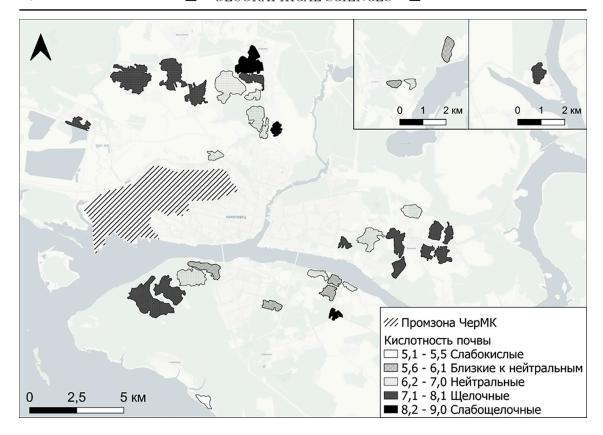


Рис. 2. Карта-схема распределения показателя pH почв в исследованных экосистемах Источник: составлено авторами по результатам данного исследования

Кислотность почв Череповецкого района

Индикаторами аэротехногенного грязнения от промышленных предприятий в первую очередь могут служить кислотно-основные показатели. Для области характерны слабокислые и среднекислые почвы. В 2016 г. кислотность для Череповецкого района составляла от 5,40 до 5,50, а потенциальная – от 4,24 до 4,98 [5]. Диапазон значений актуальной кислотности в текущем исследовании на территории Череповецкого района составлял от 5,2 до 8,9 со средним значением $7,0\pm0,8$ (рис. 2), а потенциальной – от 4,2 до 7,8 со средним значением $6,4\pm0,9$. Разница между актуальной и потенциальной кислотностью в среднем составляет 0.6 ± 0.4 .

В сравнении с данными, представленными в [5] в 2016 г., кислотность Череповецкого района изменилась значительно: реакция среды сменилась со слабокислой на нейтральную. Несмотря на то, что в составе выбросов ЧерМК преобладают SO₂, NO₂, NO и др., вызывающие вместе с CO₂ выпадение кислых осадков, к подкислению почв, в отличие от цветной металлургии,

это не приводит, так как с пылевыми выбросами в почвы поступают карбонаты кальция и магния, нейтрализующие кислотность и подщелачивающие почву [6]. Высокое содержание кальция в почвах подтверждается результатами лабораторных анализов, которые выявили содержание данного элемента в диапазоне от 1 до 40 г/кг.

Наименьшее значение 5,2 соответствует точке 35, расположенной в д. Костяевка, которая отличается от остальных площадок наличием большого количества хвойных пород на данной территории и более легким гранулометрическим составом, то есть закисление почвы на точке произошло по естественной причине — образование гумуса из трудноразлагаемой органики (хвои).

Содержание микроэлементов в зоне влияния Череповецкого металлургического комбината

Полученные данные сравнивались с действующим в России в настоящее время гигиеническим нормативом [7], а также с результатами исследований по изучению подвижных форм микроэлементов в дерново-подзолистых почвах.

1,57–14,47

	Cd, мг/кг	Си, мг/кг	Fe, мг/кг	Mn, мг/кг
Текущее исследование	0,088 $(0,053-0,135)$	0,142 (0,069 – 0,298)	26,00 (10,25 – 41,18)	$53,66 \pm 28,95$
ПДК/ОДК	_	3 [7]	15–120 [9]	100 [7]
Макаров, 1969 [11, с. 12]	_	5,5	_	274
Региональный фон [8]	0,031 - 0,095	_	_	_
	•			
	Ni, мг/кг	Pb, мг/кг	V, мг/кг	Zn, мг/кг
Текущее исследование	0,207 (0,160 – 0,269)	1,03 (0,62 – 1,41)	1,579 (0,855 – 3,559)	3,040 (1,464 – 7,223)
ПДК/ОДК	4 [7]	6 [7]	7–15 [10]	23 [7]
Макаров, 1969 [11, с. 12]		_	_	_

Результаты анализа содержания тяжелых металлов в почвах Череповецкого района и их сопоставление с фоновыми и нормативными значениями

Источник: составлено авторами на основе полученных данных в ходе исследования и на основе [7–9; 11, с. 12].

0.51 - 1.80

0.37 - 0.98

В качестве регионального фона для сравнительного анализа использованы данные [8], где обобщены результаты по 20 реперным участкам. В таблице приведены результаты текущего исследования по содержанию тяжелых металлов (Cd, Cu, Fe, Mn, Ni, Pb, V, Zn) в сравнении с ПДК, фоновыми значениями и литературными данными.

Региональный фон [8]

По результатам исследования медиана содержания кадмия (Cd) составила 0,088 мг/ кг, что в целом соответствует региональному фону Вологодской области [8]. Содержание меди (Cu) -0.142 мг/кг - значительно ниже установленного ПДК. Содержание железа (Fe) -26,00 мг/кг — находится в пределах фоновых значений. Для марганца (Mn) среднее значение составило 53,66 мг/кг, что ниже ПДК. Никель (Ni) -0.207 мг/кг - ниже фонового диапазона и ПДК. Содержание свинца (Pb) – 1,03 мг/кг – ниже ПДК, но соответствует региональному фону. Ванадий (V) - 1,579 мг/кг - ниже фоновых значенийпо литературным данным. Содержание цинка (Zn) - 3,040 мг/кг – также ниже ПДК и находится в пределах регионального фона.

Согласно результатам исследования [11, с. 11–12], проведенного в дерново-подзолистых почвах Вологодской области (в том числе в Череповецком районе) в гумусовом горизонте в 1969 г., содержание подвижных форм марганца было 274 мг/кг, а меди – 5,5 мг/кг. Такое различие с данными настоящего исследования, вероятно, главным образом связано, во-первых, с сокращением промышленных выбросов в атмосферу города за этот период за счет внедрения газоочистных установок и замкнутых циклов производства, снижающих поступление марган-

ца и меди в окружающую среду, во-вторых, с прекращением использования фосфорных удобрений с добавками марганца, меди, кобальта и цинка главным образом на севере города, ведь раньше эти территории были частью крупного Череповецкого колхоза, центром которого была д. Большой Двор (Тоншаловское сельское поселение) [11, с. 11].

Луговое сообщество на севере города в 7 км от основных цехов ПАО «Северсталь» (т. 5) выделяется на фоне всех остальных повышенным содержанием меди, марганца, никеля, свинца, ванадия и цинка. Вероятно, это связано с его близостью к придорожной зоне трассы 19К-125 с высокой интенсивностью движения, расположением по направлению преобладающих направлений ветров и непосредственной близостью к предприятию. Максимальное содержание меди в почве точки 5 составило 6,010 мг/кг, что в 2 раза превышает установленную предельно допустимую концентрацию (ПДК) для почв. Содержание свинца на этом же участке достигло 19,57 мг/кг и превышает ПДК в 3,3 раза.

Повышенное содержание кадмия, меди, свинца, ванадия, цинка наблюдается в северном направлении в радиусе до 10 км от ЧерМК (разница в 1,2–3,7 раза), что указывает на комбинат как основной источник его поступления (рис. 3 и 4). В северном направлении (совпадающем с преобладающими ветрами) содержание марганца выше, чем в других направлениях. Однако на удалении более 15 км снижения содержания не выявлено, что может свидетельствовать о дополнительных источниках поступления марганца. Для никеля наблюдается иная картина пространственного распределения (рис. 4).

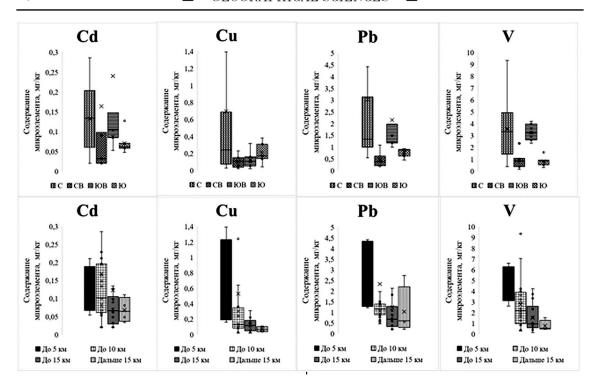


Рис. 3. Содержание подвижных форм кадмия, меди, свинца и ванадия (мг/кг) в почвах в зависимости от расстояния от направления (верхний ряд) и расстояния от основных цехов предприятия (нижний ряд) Источник: составлено авторами по результатам данного исследования

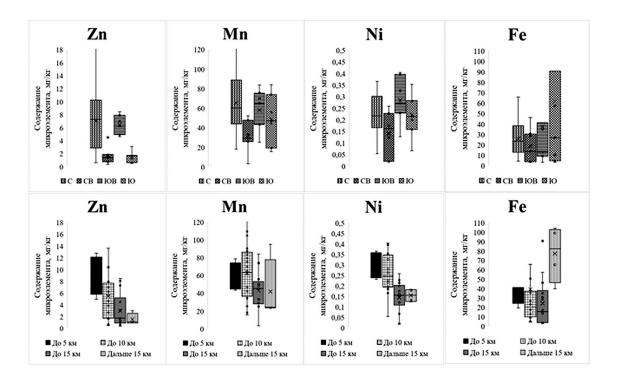


Рис. 4. Содержание подвижных форм цинка, марганца, никеля и железа (мг/кг) в почвах в зависимости от расстояния от направления (верхний ряд) и расстояния от основных цехов предприятия (нижний ряд) Источник: составлено авторами по результатам данного исследования

Несмотря на то, что железо является основным компонентом выбросов предприятия черной металлургии и по интенсивности поступления на поверхность почв вблизи источника загрязнения должно значительно превосходить остальные металлы, вблизи ЧерМК по результатам исследования (рис. 4) ожидаемое преобладание железа не наблюдается.

Сравнение двух выборок значений содержания железа в почве, разделенных по уровню кислотности (1-я выборка: pH > 7; 2-я выборка: рН < 7), с использованием U-критерия Манна – Уитни показало, что гипотеза о наличии статистически значимых различий между группами подтверждается. Это соответствует известной способности железа увеличивать свою подвижность при переходе от почв с щелочной реакцией к нейтральным и кислым почвам. Аналогичные результаты были описаны в работе [12] о техногеохимической аномалии в Череповецком районе. Техногеохимическая аномалия также подробно рассматривалась в текстах [13; 14] и других подобных работах. Из этого можно предположить, что вблизи ЧерМК, где преобладают нейтральные почвы, больше содержание валового железа, однако оно преимущественно закреплено в нерастворимых формах (оксиды, гидроксиды). В то же время вдали от предприятия более кислые почвы и возрастает доля подвижных форм железа.

Для оценки загрязнения почв тяжелыми металлами также был рассчитан показатель суммарного загрязнения почв (показатель Саета) (Zc), значения которого проградуированы (условно) по классам опасности. За фоновое содержание шести элементов (Cd, Pb, Zn, Cu, Ni и Mn) в почве принимались средние значения исследуемых показателей в верхнем горизонте (0-20 см) почв реперного участка Дарвинского заповедника в 2013 г. [15]. В результате расчет показателя суммарного загрязнения почв (показатель Саета) показал значение 29, что позволяет охарактеризовать участок исследования как умеренно опасный при 16 < Zc < 32.

Необходимо учесть разную токсичность тяжелых металлов, потому, внеся поправочный коэффициент на токсичность, рассчитывался показатель суммарного загрязнения (Zct). Значение нового показателя увеличилось на 6 баллов по сравнению с показателем Саета и стало равно 35, что соответствует опасной категории загрязнения при 32 < Zct < 128.

Корреляционный анализ

В данных по почвам Череповецкого района выявлено 9 значимых коэффициентов корреляции Пирсона между парами параметров со связью средней силы ($|r| \ge 0.5$) и выше. Тесные корреляционные связи установлены между Ni, Pb и Cu, формирующие единую группу: Ni–Cu (r=0.96), Ni–Pb (r=0.88) и Pb–Cu (r=0.88), что свидетельствует, видимо, о совместной аккумуляции этих элементов в почве в результате поступления из одного источника. Дополнительно цинк (Zn) демонстрирует связь средней силы с Pb (r=0.76), Cu (r=0.57), V (r=0.54) и Mn (r=0.65), что также может говорить о совместном присутствии в составе выбросов.

Подобное присутствие нескольких загрязняющих веществ (Ni, Mn) описано в составе выбросов сталеплавильного производства ЧерМК в исследовании [16], отдельно в этом же тексте приводятся результаты мониторинга почв о локально выраженном загрязнении почв, непосредственно примыкающих к комбинату, по цинку (Zn) и никелю (Ni). Если говорить о меди (Cu), свинце (Pb) и ванадии (V), то они обычно сопутствуют железу при его производстве [17, с. 17].

Кроме того, можно выделить связь средней силы между $pH(H_2O)$ и Mn (r=0,56). Вероятно, это связано с тем, что при повышении pH увеличивается количество подвижных форм марганца.

Заключение

Исследование не выявило формирования выраженных вертикальных градиентов актуальной кислотности. Содержание микроэлементов обусловлено сочетанием двух ключевых факторов: атмосферного загрязнения и природных процессов почвообразования.

Почвы Череповецкого района характеризуются нейтральной реакцией среды $(pH=7,0\pm0,8)$. Подобное значение коррелирует с рассеиванием выбросов от Череповецкого металлургического комбината, которые в силу своего химического состава подщелачивают почву.

Выявлено, что максимальные содержания Си и Рb превышают допустимые значения (ПДК для почв). В зоне влияния ЧерМК на расстоянии до 10 км отмечается повышенное содержание микроэлементов (Cd, Pb, Cu, V, Zn) по сравнению с территориями, расположенными дальше (разница в 1,2–3,7 раза). Расчет показателя суммарного загрязнения почв (показатель Саета) классифицирует участок исследования как

умеренно опасный, а показатель суммарного загрязнения указывает на опасную категорию загрязнения, учитывая разную токсичность металлов.

Для оценки взаимосвязи между исследованными веществами в почве был использован коэффициент корреляции Пирсона. Были выявлены 9 значимых корреляций средней силы и выше.

Полученные результаты могут быть использованы при разработке природоохранных мероприятий с целью улучшения экологической обстановки в Череповецком районе.

Список литературы

- 1. Чернобровин ВП. Черная металлургия России в динамике (1970–2018 гг.) // Вестник ЮУрГУ. Серия: Металлургия. 2020. № 1. С. 7–17. DOI: 10.14529/met200101.
- 2. Правительство Вологодской области. Публичный доклад о результатах деятельности Департамента природных ресурсов и охраны окружающей среды Вологодской области за 2021 год. 2022. С. 43. [Электронный ресурс]. URL: https://mpr.gov35.ru/dokumenty/detail.php?ELEMENT_ID=21491 (дата обращения: 21.02.2025).
- 3. Опекунова М.Г., Арестова И.Ю., Елсукова Е.Ю. Методы физико-химического анализа почв и растений: учебно-методическое пособие. СПб.: Издательство Санкт-Петербургского университета. 2015. 84 с. ISBN: 978-5-288-05633-8.
- 4. Савинов С.С., Дробышев А.И., Зверьков Н.А., Титова А.Д. Высокочувствительные инструментальные методы анализа: учебно-методическое пособие. СПб.: BBM, 2016. 85 с. ISSN 0044-4502.
- 5. Веденеева Н.В., Рогов В.А., Наклейщикова Л.В., Налиухин А.Н. Почвенный покров и агрохимическая характеристика пахотных почв Вологодской области. Динамика почвенного плодородия по циклам обследования // Достижения науки и техники АПК. 2016. № 8. С. 22–27. EDN: WJZTLX.
- 6. Наумов В.Д. Генетическая и классификационная оценка дерново-подзолистых почв // Известия ТСХА. 2018. № 6. С. 17–25. URL: https://cyberleninka.ru/article/n/geneticheskaya-i-klassifikatsionnaya-otsenka-dernovo-podzolistyh-pochv (дата обращения: 20.04.2025).
- 7. СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания: утв. постановлением Главного государственного санитарного врача Российской Федерации от 28.01.2021 № 2. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2021. 988 с.

- 8. Правительство Вологодской области. Доклад о состоянии и охране окружающей среды Вологодской области. 2023. 218 с. [Электронный ресурс]. URL: https://vologda-oblast.ru/dokumenty/otchety/5778145/ (дата обращения: 25.03.2025).
- 9. Петухов А.С., Кремлева Т.А., Хритохин Н.А., Петухова Г.А., Кайдунова П.И. Содержание тяжелых металлов (Сu, Zn, Fe, Mn, Pb, Cd) в почвах г. Тюмени // Вестник Нижневартовского государственного университета. 2020. № 1. С. 127–134. DOI: 10.36906/2311-4444/20-1/19.
- 10. Ермоленко Е.Н., Панасин В.И., Рымаренко Д.А. Ванадий в дерново-подзолистых почвах Калининградской области // Агрохимический вестник. 2012. № 6. С. 7-9. URL: https://cyberleninka.ru/article/n/vanadiy-v-dernovo-podzolistyh-pochvah-kaliningradskoy-oblasti (дата обращения: 20.04.2025).
- 11. Макаров В.А. Содержание микроэлементов в дерново-подзолистых почвах Вологодской области: автореф. дис. ... канд. сельхоз. наук. Ленинград, 1969. 23 с. [Электронный ресурс]. URL: https://www.booksite.ru/fulltext/natural/makarov/text.pdf (дата обращения: 13.04.2025).
- 12. Водяницкий Ю.Н., Большаков В.А., Сорокин С.Е., Фатеева Н.М. Техногеохимическая аномалия в зоне влияния Череповецкого металлургического комбината // Почвоведение. 1995. № 4. С. 498–507. EDN: RQRJGO.
- 13. Водяницкий Ю.Н., Савичев А.Т., Рогова О.Б. Содержание сверхтяжелых металлов (Ва, La, Ce) в почвах Череповецкой техногеохимической аномалии // Бюллетень Почвенного института. 2010. № 65. С. 58–65. URL: https://cyberleninka.ru/article/n/soderzhanie-sverhtyazhelyh-metallov-ba-la-ce-v-pochvah-cherepovetskoy-tehnogeohimicheskoy-anomalii (дата обращения: 20.04.2025).
- 14. Груздев В.С. Динамика экосистем щучковых лугов в зоне действия техногенных выбросов комбината «Северсталь» // Проблемы региональной экологии. 2008. № 3. С. 89–93. EDN: JVYRBR.
- 15. Летопись природы за 2013 год. Федеральное государственное бюджетное учреждение «Дарвинский государственный природный биосферный заповедник». 2014. 257 с. URL: https://darwinsky.ru/biblioteka/Летопись%20природ_2013_%20Дарвинский%20заповедник(3).pdf (дата обращения: 20.04.2025).
- 16. Зайцев В.С. Анализ природоохранной деятельности предприятий горно-металлургической отрасли на примере Череповецкого комбината ПАО «Северсталь» // Экономика в промышленности. 2020. № 13 (2). С. 244-256. DOI: 10.17073/2072-1633-2020-2-244-256.
- 17. Ладонин Д.В. Формы соединений тяжелых металлов в техногенно загрязненных почвах: автореф. дис. ... докт. биол. наук. Москва, 2016. 42 с. [Электронный ресурс]. URL: https://soil.msu.ru/attachments/article/2183/Автореферат. pdf (дата обращения: 25.04.2025).

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

УДК 504.064:504.45 DOI 10.17513/use.38439

ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ИЗМЕНЧИВОСТЬ СОДЕРЖАНИЯ ГЛАВНЫХ ИОНОВ В ВОДЕ НИЖНЕГО ТЕЧЕНИЯ РЕКИ ДОН (2000–2024 ГГ.)

Сазонов А.Д. ORCID ID 0000-0002-1700-9314

Гидрохимический институт Росгидромета, Россия, Ростов-на-Дону, e-mail: alexei.sazonow2016@ya.ru; ФГАОУ ВО «Южный федеральный университет», Россия, Ростов-на-Дону

Статья посвящена изучению пространственно-временной изменчивости минерализации воды и содержания в ней главных ионов в нижнем течении р. Дон. Материалами настоящего исследования послужили первичные гидрохимические данные государственной наблюдательной сети Росгидромета о содержании в воде реки хлоридов, сульфатов, гидрокарбонатов, ионов магния, кальция, суммы натрия и калия за современный период с 2000 по 2024 г. по данным пунктов наблюдений, расположенных между городами Константиновск и Азов. В результате проведения статистического анализа первичных гидрохимических данных и сравнительного анализа было установлено увеличение содержания главных ионов в нижнем течении р. Дон в направлении вниз по течению реки. Отмечено, что по данным пунктов гидрохимических наблюдений г. Константиновск и ст-ца Раздорская разброс среднемноголетних значений был выше, чем в пунктах наблюдений Ростов-на-Дону и Азов. Показано, что в самые маловодные годы концентрация в воде реки главных ионов по сумме была выше, чем в самые многоводные и средние по объему водного стока годы. Полученные результаты свидетельствуют о влиянии климатических изменений на трансформацию ионного состава воды нижнего течения р. Дон в современный период.

Ключевые слова: минерализация, река Дон, главные ионы, ионный состав, Нижний Дон

SPATIAL-TEMPORAL VARIABILITY OF THE CONTENT OF MAIN IONS IN THE WATER OF THE LOWER REACH OF THE DON RIVER (2000–2024)

Sazonov A.D. ORCID ID 0000-0002-1700-9314

Hydrochemical Institute of Roshydromet, Russia, Rostov-on-Don, e-mail: alexei.sazonow2016@ya.ru; Southern Federal University, Russia, Rostov-on-Don

The article is devoted to the study of spatiotemporal variability of water mineralization and the content of major ions in it in the lower reaches of the Don River. The materials of this study are primary hydrochemical data of the state observation network of Roshydromet on the content of chlorides, sulfates, hydrocarbonates, ions of magnesium, calcium, total sodium and potassium in river water according to the data of observation points located between the cities of Konstantinovsk and Azov for the modern period from 2000 to 2024. As a result of the statistical analysis of the primary hydrochemical data and comparative analysis, an increase in the content of major ions in the lower reaches of the Don River in the downstream direction was established. It is noted that, according to the hydrochemical observation points of the town of Konstantinovsk and the village of Razdorskaya, the spread of average long-term values was greater than at the observation points of Rostov-on-Don and Azov. It is shown that in the driest years, the concentration of major ions in total in the river water was higher than in the highest-flow years and years with average water runoff volume. The obtained results indicate the influence of climate change on the transformation of the ionic composition of water in the lower reaches of the Don River in the modern period.

Keywords: mineralization, Don River, main ions, ionic composition, Lower Don

Введение

В последние десятилетия в условиях климатических изменений и антропогенной нагрузки химический состав воды рек способен претерпевать значительные трансформации [1–3]. Этим может обуславливаться пространственная и временная неоднородность химического состава воды рек и, в частности, содержание в речной воде главных ионов [4].

Нижнее течение р. Дон находится в регионе с преобладанием засушливых условий с недостатком увлажнения [5–7]. В последние десятилетия наблюдалось увели-

чение среднегодовой температуры воздуха и сокращение суммы атмосферных осадков на территории Донского водосбора, что привело к увеличению темпов аридизации территории [2; 3]. Кроме того, бассейн Нижнего Дона испытывает высокую антропогенную нагрузку, которая может негативно воздействовать на водные объекты рассматриваемой территории [5; 6; 8].

Цель исследования — изучение содержания главных ионов в воде нижнего течения р. Дон в современный период (2000—2024 гг.).

Материалы и методы исследования

Материалами исследования послужили первичные гидрохимические данные государственной наблюдательной сети Росгидромета о минерализации воды нижнего течения р. Дон и содержании в ней главных ионов (сульфатов, хлоридов, гидрокарбонатов, кальция, ионов магния, суммы натрия и калия) по данным пунктов (створов) наблюдений: г. Константиновск, ст-ца Раздорская, г. Ростов-на-Дону и г. Азов (рис. 1).

В ходе исследования была оценена пространственная и временная изменчивость содержания главных ионов в воде реки. Статистическая обработка многолетних данных и построение графиков производилось с использованием программы Microsoft Excel.

Результаты исследования и их обсуждение

По результатам статистической обработки рядов многолетних гидрохимических данных была оценена пространственная изменчивость содержания главных ионов в воде нижнего течения р. Дон (рис. 2). Согласно полученным результатам, можно отметить, что в направлении вниз по течению реки за исследуемый период наблюдалось заметное пространственное увеличение содержания в воде сульфатов, хлоридов, кальция, натрия и калия (по сумме). Обращает на себя внимание отличие размахов среднегодовых значений: в пунктах наблюдений г. Константиновск и ст-ца Раздорская диапазон значений содержания в воде сульфатов, хлоридов, гидрокарбонатов, кальция и суммы натрия и калия был значительно выше, чем в пунктах наблюдений Ростов-на-Дону и Азов. Это может свидетельствовать о наличии

факторов, приводящих к пространственной неоднородности содержания исследуемых веществ в воде нижнего течения р. Дон.

На участке расположения пунктов г. Константиновск и ст-ца Раздорская в р. Дон впадают притоки р. Северский Донец и Сал, которые могут оказывать воздействие на ионный состав воды р. Дон.

При этом между Ростовом-на-Дону и Азовом какие-либо крупные притоки отсутствуют. Этим можно объяснить более стабильный ионный состав воды на данном участке: на фоне отсутствия значимых источников поступления главных ионов в р. Дон наблюдается менее выраженный размах среднегодовых значений.

Как известно, объем водного стока может оказывать влияние на трансформацию химического состава вод, так как влияет на способность водных объектов к самоочищению. Повышенный водный сток создает условия для увеличения кратности разбавления веществ, пониженный — для их концентрирования [9; 10].

В табл. 1 представлена информация о содержании главных ионов (по сумме) в нижнем течении р. Дон в годы повышенного, пониженного и среднемноголетнего водного стока. В рамках рассматриваемого периода отмечались наибольшие концентрации в воде реки главных ионов (по сумме) в годы пониженного водного стока. В Константиновске в маловодные годы концентрация компонента была на 37% выше, чем в годы среднемноголетнего стока, в Раздорской — на 38%, в Ростове-на-Дону — на 10%, в Азове — на 13%. В самые многоводные и средние по объему стока годы содержание в воде суммы главных ионов было заметно ниже.

Puc. 1. Схема расположения пунктов (створов) гидрохимических наблюдений Источник: составлено автором

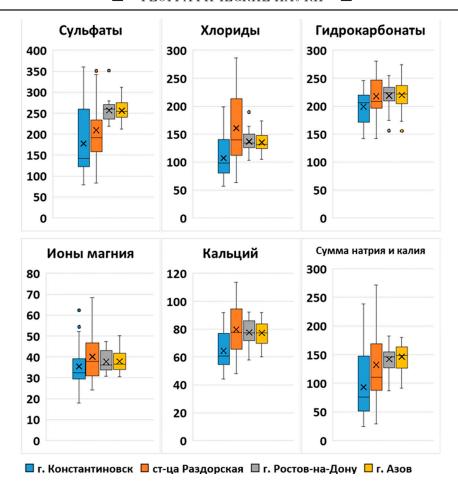


Рис. 2. Диаграммы размаха («ящики с усами») содержания главных ионов в воде нижнего течения р. Дон, мг/л Источник: составлено автором на основе используемых данных

Таблица 1 Среднемноголетние показатели минерализации воды (суммы главных ионов), осредненные по разным группам лет по величине водного стока р. Дон, мг/л

Пункт наблюдений (км от устья)	Пониженный сток	Повышенный сток	Средний сток
Г. Константиновск (203)	767	484	559
Ст-ца Раздорская (151)	999	739	721
Г. Ростов-на-Дону (47)	931	803	843
Г. Азов (18)	949	817	843

Примечание. Красным цветом выделено максимальное значение, зеленым – минимальное. Источник: составлено автором на основе используемых данных.

При рассмотрении ионного состава воды важно уделить внимание хронологической изменчивости содержания главных ионов в воде реки. В ранее проведенных исследованиях отмечалось, что в связи с введением в эксплуатацию Цимлянского водохранилища в 1953 г. и созданием сети ирригационных каналов в левобережной части бассейна

Нижнего Дона наблюдалось увеличение солевого загрязнения воды в нижнем течении р. Дон [11–13].

На рис. 3 представлен график, характеризующий содержание в воде нижнего течения р. Дон главных ионов (по сумме) по данным пунктов гидрохимических наблюдений за период с 2000 по 2024 г.

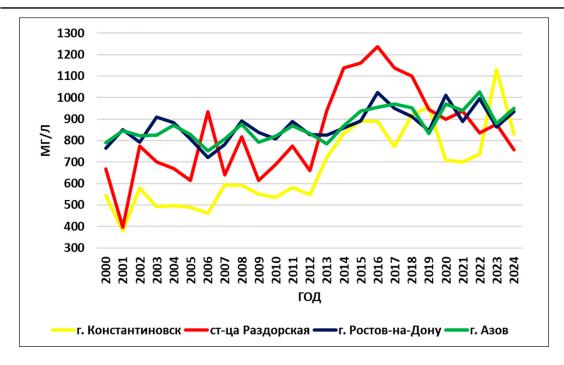


Рис. 3. Хронологическая изменчивость содержания главных ионов (по сумме) в нижнем течении р. Дон, мг/л
Источник: составлено автором на основе используемых данных

 Таблица 2

 Классификация воды нижнего течения р. Дон

 по ионному составу по многолетним периодам

Пункт наблюдений	2001–2	2012 гг.	2013–2024 гг.		
Пункт наолюдении	Класс	Группа	Класс	Группа	
Г. Константиновск	Гидрокарбонатно- сульфатный	Кальциево- магниевая	Сульфатно- хлоридный	Натриевая	
Ст-ца Раздорская	Сульфатно- хлоридный	Натриево- кальциевая	Хлоридно- сульфатный	Натриевая	
Г. Ростов-на-Дону	Сульфатный	Натриевая	Сульфатно- хлоридный	Натриевая	
Г. Азов	Сульфатный	Натриевая	Сульфатный	Натриевая	

Источник: составлено автором с использованием классификации О.А. Алекина [14, с. 106].

Представленные результаты свидетельствуют о заметном увеличении содержания в воде реки главных ионов (по сумме). Стоит отметить, что наиболее интенсивный рост концентрации компонента отмечался в пунктах гидрохимических наблюдений г. Константиновск и ст-ца Раздорская. Начиная с 2016 г. в пункте наблюдений г. Константиновск отмечалось снижение содержания главных ионов (по сумме), что может свидетельствовать об ослаблении факторов, оказывающих воздействие на поступление компонента в реку.

В пунктах гидрохимических наблюдений г. Ростов-на-Дону и г. Азов также на-

блюдалось увеличение содержания в воде реки суммы главных ионов, но оно было менее выраженным, что, как и в случае с пространственной изменчивостью, может быть связано с отсутствием значимых факторов воздействия.

Согласно представленным выше результатам, за рассматриваемый период наблюдалась пространственная и временная изменчивость содержания в воде нижнего течения р. Дон главных ионов. В связи с этим целесообразно оценить масштабность происходящих изменений с применением классификации О.А. Алекина, с помощью которой можно определить трансформацию класса

и группы вод [14, с. 106]. Особенно актуально использовать подобные классификации с целью наблюдения за многолетними изменениями [15]. Данные о трансформации ионного состава воды представлены в табл. 2.

Основываясь на полученных результатах, можно отметить, что за рассматриваемый период произошла хронологическая трансформация ионного состава воды. По данным пунктов наблюдений г. Константиновск и ст-ца Раздорская наблюдалась трансформация как класса, так и группы вод, что связано с увеличением преобладания в ионном составе сульфатных и хлоридных анионов, а также катионов натрия. В пункте наблюдений г. Ростов-на-Дону отмечалась трансформация класса вод, в пункте наблюдений г. Азов класс и группа вод не изменялись.

Выводы

Проведено исследование пространственно-временной изменчивости содержания главных ионов в воде нижнего течения р. Дон в современный период. По результатам исследования можно сделать следующие выводы.

- 1. Наблюдалось пространственное возрастание содержания главных ионов в направлении вниз по течению реки.
- 2. За период с 2000 по 2024 г. отмечалось хронологическое увеличение концентрации суммы главных ионов.
- 3. В маловодные годы содержание в воде реки суммы главных ионов было выше, чем в годы повышенного водного стока.
- 4. Отмечалась трансформация ионного состава (класса и группы) воды реки по классификации О.А. Алекина.

Список литературы

- 1. Гельфан А.Н., Калугин А.С., Крыленко И.Н., Лавренов А.А., Мотовилов Ю.Г. Гидрологические последствия изменения климата в крупных речных бассейнах: опыт совместного использования региональной гидрологической и глобальных климатических моделей // Вопросы географии. 2018. № 145. С. 49–63. URL: https://www.elibrary.ru/item. asp?id=34913822 (дата обращения: 20.08.2025). EDN: XNFPIL.
- 2. Георгиади А.Г., Коронкевич Н.И., Милюкова И.П., Барабанова Е.А., Кашутина Е.А. Современные и сценарные изменения стока Волги и Дона // Водное хозяйство России. 2017. № 3. С. 6–23. DOI: 10.35567/1999-4508-2017-3-1.

- 3. Георгиади А.Г., Милюкова И.П., Кашутина Е.А. Современные и сценарные изменения речного стока в бассейне Дона // Водные ресурсы. 2020. Т. 47. № 6. С. 651–662. DOI: 10.31857/S0321059620060061.
- 4. Моисеенко Т.И., Гашкина Н.А., Хорошавин В.Ю. Прогноз влияния возможного потепления климата на химический состав вод суши // Доклады Академии наук. 2011. Т. 441. № 5. С. 666–669. URL: https://www.elibrary.ru/item.asp?id=17238718 (дата обращения: 20.08.2025). EDN: ONGCQD.
- 5. Жукова С.В. Обеспеченность водными ресурсами рыбного хозяйства Нижнего Дона // Водные биоресурсы и среда обитания. 2020. Т. 3. № 1. С. 7–19. DOI: $10.47921/2619-1024_2020_3_1_7$.
- 6. Дандара Н.Т., Немыкина Д.Е. Гидрологический анализ реки Дон на участке ниже Кочетовского гидроузла: гидрографическая сеть, расходы, уровни и уклоны воды // Вестник современных исследований. 2018. № 5.3. С. 88–99. URL: https://www.elibrary.ru/item.asp?id=35287843 (дата обращения: 20.08.2025). EDN: XTTVPV.
- 7. Лурье П.М., Панов В.Д. Влияние изменений климата на гидрологический режим р. Дон в начале XXI столетия // Метеорология и гидрология. 1999. № 4. С. 90–97. URL: https://elibrary.ru/item.asp?id=27399748 (дата обращения: 20.08.2025). EDN: XBPHSP.
- 8. Дандара Н.Т., Немыкина Д.Е. Гидрологический анализ реки Дон на участке ниже Кочетовского гидроузла: посадка уровней воды, связь расходов и уровней, скоростной режим // Вестник современных исследований. 2018. № 10.5 (25). С. 134–144. URL: https://elibrary.ru/item. asp?id=36465725 (дата обращения: 20.08.2025). EDN: VMPFRE.
- 9. Thompson J.R., Gosling S.N., Zaherpour J., Laizé C.L.R. Increasing risk of ecological change to major rivers of the world with global warming // Earth's Future. 2021. T. 9. № 11. P. e2021EF002048. DOI: 10.1029/2021EF002048.
- 10. Коронкевич Н.И., Долгов С.В. Сток с водосбора как источник диффузного загрязнения рек // Вода и экология: проблемы и решения. 2017. № 4 (72). С. 103–110. DOI: 10.23968/2305-3488.2017.22.4.103-110.
- 11. Никаноров А.М., Иваник В.М., Пирумова Е.И. Тенденции многолетних изменений солевого состава воды р. Дон в нижнем течении // Метеорология и гидрология. 2004. № 11. С. 83–89. URL: https://www.elibrary.ru/item. asp?id=18112810 (дата обращения: 20.08.2025). EDN: PGJKZJ.
- 12. Матишов Г.Г., Григоренко К.С. Геоэкологический феномен в условиях маловодья и зарегулирования реки Дон // Доклады Российской академии наук. Науки о 3емле. 2024. Т. 519. № 1. С. 560–566. DOI: 10.31857/S2686739724110201. EDN: GNBSES.
- 13. Матишов Г.Г., Хорошев О.А., Сушко К.С., Степаньян О.В., Малик Ю.В. Нижний Дон: уникальная речная артерия и ее экологические проблемы // Природа. 2023. № 3 (1291). С. 36–50. DOI: 10.7868/S0032874X23030043.
- 14. Алекин О.А. Основы гидрохимии. Л.: Гидрометеорологическое издательство, 1953. 296 с. [Электронный реcypc]. URL: https://www.geokniga.org/books/7838 (дата обращения: 20.08.2025).
- 15. Широкова В.А. Классификации природных вод: прошлое, настоящее, будущее // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013. Т. 18. № 3. С. 1023–1027. URL: https://www.elibrary.ru/item.asp?edn=pwmkhd (дата обращения: 20.08.2025). EDN: PWMKHD.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

УДК 502.51:621.6.033(268.46) DOI 10.17513/use.38440

МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ НЕФТИ И НЕФТЕПРОДУКТОВ В БЕЛОМ МОРЕ

¹Толстиков А.В. ORCID ID 0000-0002-7690-3404, ²Чернов И.А.

¹ФГБУН «Институт водных проблем Севера» Карельского НЦ РАН, Россия, Петрозаводск, e-mail: alexeytolstikov@mail.ru; ²ФГБУН «Институт прикладных математических исследований» Карельского НЦ РАН, Россия, Петрозаводск

Утечки нефти и нефтепродуктов в морской среде представляют серьезную проблему для экосистем и экономики. Между тем отследить перемещение пятна загрязнителя в морской среде – задача трудная и ресурсоемкая, существующие для этого математические модели не учитывают многих параметров. Поэтому целью исследования стало моделирование переноса нефти и мазута в различных районах Белого моря в зависимости от сезона с помощью трехмерной численной модели JASMINE. Данный программный комплекс разработан авторами и предназначен для численного моделирования состояния Белого моря. Горизонтальная регулярная сетка модели около 3 км, шаг по времени 3 минуты, вертикальная сетка между горизонтами 5 или 10 м в зависимости от глубины. Граничные условия представляют собой тип излучения: втекающая вода имеет заданную соленость и температуру. Нефть задана как плавучая примесь, мазут - как трехмерная примесь. Было показано распространение пятна сырой нефти от портов Белого моря в течение одного года и нескольких лет. Выполнена имитация разлива мазута в Онежском заливе в сентябре 2003 г. Результаты сравнивались с доступными источниками данных. Согласно расчетам, нефтепродукты в Онежском заливе могут задерживаться почти на 5 лет. Подобная авария влияет на экосистемы всех районов Белого моря. При отсутствии информации ежесуточного распространения пятен загрязнителей в водоеме результаты моделирования могут быть востребованы органами власти, природоохранными организациями, портовыми службами. Таким образом, представление нефти как плавучей примеси, а мазута как трехмерной примеси при моделировании оправдано с точки зрения учета распространения этих видов загрязнителей в морской среде в зависимости от характера течений и ветровых условий.

Ключевые слова: моделирование примеси, Белое море, JASMINE, нефть, мазут

MODELLING THE SPREAD OF OIL AND OIL PRODUCTS IN THE WHITE SEA

¹Tolstikov A.V. ORCID ID 0000-0002-7690-3404, ²Chernov I.A.

¹Northern Water Problems Institute of Karelian Research Centre of RAS, Russia, Petrozavodsk, e-mail: alexeytolstikov@mail.ru;

²Institute of Applied Mathematical Research of Karelian Research Centre of RAS, Russia, Petrozavodsk

Oil and oil product spills in the marine environment pose a serious problem for ecosystems and economy. Meanwhile, tracking the movement of a pollutant in the marine environment is a difficult and resource-intensive task; existing mathematical models do not take into account many parameters. Therefore, the aim of the study was to model the transfer of oil and fuel oil in different areas of the White Sea depending on the season using the 3D numerical model JASMINE. This software package was developed by the authors and is intended for numerical modeling of the state of the White Sea. The horizontal regular grid is about 3 km, the time step is 3 minutes, the vertical is 5-10 m. The boundary conditions represent a type of radiation: the inflowing water has a salinity and temperature specified by the measured data. Oil is defined as a floating impurity, fuel oil as a three-dimensional impurity. The spread of a crude oil slick from ports over one year and several years was shown. A fuel oil spill in the Onezhskiy Bay in September 2003 was simulated. The results are compared with available data sources. Oil products could linger in Onezhskiy Bay for 5 years. Such an accident would impact on ecosystems of the all parts of the White Sea. In the absence of information on the daily spread of pollutants, the modeling results may be in demand by government, environmental organizations, ports services. The presentation of oil as a floating impurity and fuel oil as a three-dimensional impurity is justified depending on the nature of the currents and wind conditions.

Keywords: modeling of impurity, the White Sea, JASMINE, oil, fuel oil

Введение

В настоящее время при активном освоении ресурсов Арктики усиливается роль Северного морского и Беломорско-Балтийского водных путей, а соответственно, в планах их модернизации предусмотрено изменение береговой инфраструктуры для уве-

личения в будущем объемов перевозимых грузов, в том числе нефти и нефтепродуктов. Предполагается строительство новых нефтеналивных терминалов, повышение грузооборота. Что касается транспортировки мазута и нефти по Беломорско-Балтийскому водному пути, то в настоящее время

она не осуществляется, хотя в начале XXI в. такие работы выполнялись, и существовали проекты по ежегодному наращиванию объемов [1, с. 21]. Однако в дальнейшем от этих планов отказались. Безусловно, нефть и нефтепродукты – опасные загрязнители для моря и прибрежных экосистем [2; 3], однако в воде происходят их физические и химические изменения [4]: растекание, испарение, диспергирование, эмульгирование, растворение, окисление и т.д. Часть материала осаждается на дно, что-то попадает на берег [5; 6]. Лед также оказывает влияние на распространение нефтяного пятна, адсорбируя значительные объемы углеводородного загрязнения [7; 8]. Поэтому в различные сезоны года распространение нефти при одинаковых объемах будет отличаться.

К сожалению, в Белом море чаще всего отсутствуют документальные свидетельства поэтапного распространения пятна нефтепродуктов в зависимости от времени, либо доступны материалы эпизодических экспедиций в различных участках акватории, по которым достаточно трудно восстановить полную картину поведения загрязнителя. Наиболее хорошо документирован случай, произошедший в сентябре 2003 г. Тогда в Онежском заливе произошла утечка нефтепродуктов при аварии двух танкеров, и в море попало 54 т мазута [9]. Последствия для экосистем наблюдались в течение многих лет [10]. Также известно об аварийных разливах нефти в других районах моря, например у порта Витино (вершина Кандалакшского залива) [1, с. 35]. Порты Белого моря участвуют в логистике перегрузочных мероприятий и стыковке с железнодорожным транспортом и трубопроводами [1, с. 16-19]. В относительно небольшой акватории скапливаются суда, использующие в качестве топлива продукты переработки нефти (дизтопливо, мазут, газойль), на рейде курсируют так называемые челночные танкеры. Таким образом, порты – наиболее опасные импактные зоны для морской среды, где велик риск попадания загрязнителей (в первую очередь нефтепродуктов) в воду. В [11, с. 83-90] показаны интегральные карты экологической уязвимости Белого моря. Весь Онежский залив в данной работе отмечен как наиболее уязвимый во все сезоны.

Одним из инструментов оценки последствий техногенных катастроф являются математические модели, с помощью которых можно рассчитывать объемы, «поведение» и скорости распространения пятен загрязнителя в море при реальных или гипотети-

ческих разливах нефти и нефтепродуктов. Такие модели разрабатываются и применяются регулярно [12; 13], в том числе и для Белого моря [11, с. 106]. Однако лишь трехмерная численная модель позволяет комплексно учитывать сочетание всех факторов среды (погодные условия, динамику речного стока, ледяной покров, ветер и т.д.), одновременно моделировать распространение загрязнителя из нескольких источников, рассчитывать его перемещение и трансформацию за многолетний период. Это особенно важно, когда критически не хватает данных натурных наблюдений. В настоящее время для Белого моря функционирует лишь одна трехмерная численная модель JASMINE [14; 15]. При отсутствии информации ежесуточного распространения пятен загрязнителей в акватории Белого моря результаты моделирования могут быть востребованы органами власти, природоохранными организациями, портовыми службами.

Цель исследования: моделирование переноса нефти и мазута в различных районах Белого моря в зависимости от сезона с помощью трехмерной численной модели JASMINE.

Материалы и методы исследования

В расчетах распространения нефтяных пятен и очищения Белого моря после загрязнения нефтепродуктами используется программный комплекс JASMINE [15], основанный на конечно-элементной модели Северного Ледовитого океана FEMAO [16]. Он разработан авторами и подробно описан в работах [14; 15] (в последней внимание уделено воспроизведению основных термогидродинамических и биогеохимических процессов, а также верификации данных). В модели FEMAO используется схема вертикального смешивания уровня 2,5 Меллор и Ямады [17], изопикнического перемешивания Гента – Мак-Вильямса [18] с параметризацией переноса вихрей, пространственный масштаб которого зависит от шага сетки. Коэффициенты горизонтальной турбулентной вязкости и диффузии заданы 0.05 м^2 /с для скалярных полей и 0.1 м^2 /с для импульса.

Программный комплекс JASMINE позволяет воспроизводить поля течений, температуры и солености, различных характеристик морского льда, поведение примесей различной природы. Можно рассчитывать распространение различных видов примеси, в том числе *плавучей* — сосредоточенной на поверхности моря и переносимой горизонтальными течениями по той же схеме, что и поля, описывающие морской лед, и трехмерной с нулевой плавучестью (аналогично себя ведет, например, поле солености). Для качественного описания поведения загрязнения нефтепродуктами удобно такое разделение примеси на два класса: плавучие, которые существенно легче воды, и поэтому их вертикальным распространением можно пренебречь, и с нулевой плавучестью, если плотность вещества близка к плотности воды и характерно именно пространственное распределение загрязнения в водной толще. Так, нефть можно считать плавучей, а мазут – трехмерной примесью.

Регулярная сетка 200 на 200 узлов с шагом около 3 км (шаг по долготе зависит от широты местности) покрывает все Белое море и небольшую часть южной акватории Баренцева моря. Жидкая граница области проходит по 70° с. ш. Шаг вертикальной z-сетки составляет 5 метров до глубины 150 м и глубже этого горизонта 10 м. На свободной поверхности моря действует линеаризованное кинематическое условие. Реки описываются как пресноводные проливы со среднемесячными расходами, и в них задается температура воды, а также, при необходимости, концентрации пассивной примеси. Поток примеси через дно и берега моря отсутствует, как и через поверхность моря. На границе области, проходящей по акватории Баренцева моря, ставится условие Флезера: при вытекании беломорской воды выносится трехмерная концентрация in situ, а при поступлении баренцевоморской воды – заданная граничным условием нулевая концентрация, температура и соленость воды из данных измерений. Физически это условие интерпретируется как быстрое рассеивание примеси в обширном Баренцевом море, так что возвратом вещества можно пренебречь. Для плавучей примеси, сосредоточенной на поверхности моря, граничное условие на «жидкой границе» ставится аналогично условию для морского льда: концентрация по обе стороны границы предполагается одинаковой, так что поле мало чувствительно к колебательным движениям на границе.

Атмосферное воздействие задается из данных реанализа NOAA NCEP/NCAR [19]: температура воздуха на высоте 2 м от поверхности, влажность, атмосферное давление, скорость ветра на высоте 10 м, облачность, осадки. Для расчета потоков явного, скрытого тепла и суммарного (восходящего

и нисходящего) потока длинноволновой радиации использовались балк-формулы; поток коротковолновой солнечной радиации с поправкой на облачность рассчитывался в зависимости от времени суток и широты местности. Вода, лед и снег излучают длинноволновую радиацию по формуле черного тела с коэффициентами черноты 0,9, 0,99 и 0,97 соответственно. Альбедо воды постоянно и равно 0,1, альбедо льда и снега рассчитывается в зависимости от температуры (сухой/мокрый лед или снег). Касательное напряжение трения ветра рассчитано на основе заданной скорости ветра. Шаг по времени составил 3 минуты, что обусловлено требованиями устойчивости расчетных схем, прежде всего условием Куранта: это минимальный шаг, при котором расчет устойчив.

Модельный комплекс JASMINE достаточно хорошо воспроизводит динамику и биогеохимические процессы в Белом море [15], температурные и соленостные поля, а фронтальные зоны согласуются с данными, полученными в ходе экспедиций ИВПС КарНЦ РАН [20]. Результаты сравнения модельных и экспедиционных данных приведены, например, в [15] и показывают хорошую согласованность.

Было рассмотрено два модельных сценария: одновременного поступления нефти из портов Белого моря; поступление мазута в вершине Онежского залива (имитация утечки 2003 г.). Исходя из того, что плотность нефти составляет 855 кг/м³, она описана как плавучая примесь. Плотность мазута марки М-100 близка к плотности воды (975 кг/м³ при 20°), и он описывается как трехмерная примесь с нулевой плавучестью.

Результаты исследования и их обсуждение

Распространение примеси в Белом море зависит от динамики течений, скорости и направления ветра, а также нелинейных взаимодействий этих движений. Течения в Белом море возникают под действием прилива, ветра, атмосферного давления, стока рек, на них оказывает влияние морфометрия и рельеф дна. На рисунке 1 представлена модельная схема поверхностных течений, которая хорошо согласуется со схемой из классической работы по Белому морю [21, с. 124]. Зимой скорости и направления течений несколько отличаются от периода открытой воды, а в районе устьевых областей рек, где находятся порты Белого моря, эти различия существенны [22].

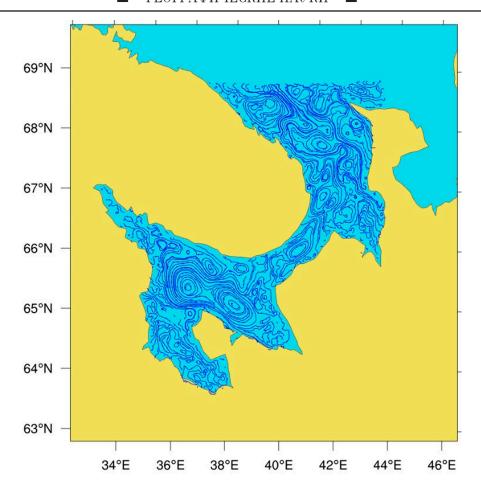


Рис. 1. Схема поверхностных течений Белого моря, среднегодовые модельные данные Примечание: составлено авторами по результатам данного исследования

Если рассматривать квазипостоянные течения (термохалинные, ветровые, дрейфовые, остаточные приливные), видно (рис. 1), что генеральная система движения для Белого моря — против часовой стрелки. Скорости сильно отличаются в зависимости от района моря [21, с. 125-126]: от 0,1 м/с в мелких губах до 0,5-0,8 м/с в проливах и возле мысов, максимально до 3 м/с. В Белом море есть квазипостоянные вихревые образования, как циклональные, так и антициклональные (рис. 1), фронтальные зоны, связанные с действием прилива и стоком крупных рек.

Пассивная примесь переносится течениями, которые, в свою очередь, обусловлены воздействием ветра, приливной циркуляцией и, в меньшей степени, другими факторами. Оказывает влияние ледовый режим. В данном исследовании сделано оправданное с точки зрения методологии допущение: если в численной модели адекватно воспроизводится картина течений, ветер и лед,

то можно считать, что перенос примеси также будет в целом отражать реальность.

Была смоделирована ситуация утечки сырой нефти в шести портах Белого моря, начиная с 1 января для 2010 года (рис. 2). 2010 год выбран, поскольку для него в базе ИВПС КарНЦ РАН [20] содержится наиболее подробная информация, на основе которой верифицировалась модель, и результаты представлены в [15].

Видно (рис. 2), что, согласно модельным расчетам, из порта Архангельск (1) пятно нефти за 10 дней будет распространяться на север. Поскольку в Двинском заливе действует сильное течение, сформировавшееся под действием влияния стока крупнейшей реки, впадающей в Белое море — Северной Двины, общая система течений Белого моря прижимает пятно к правому берегу. Интервал времени в 10 суток выбран произвольно для демонстрации возможностей модели. Расчет выполнялся посуточно на период 10 лет.

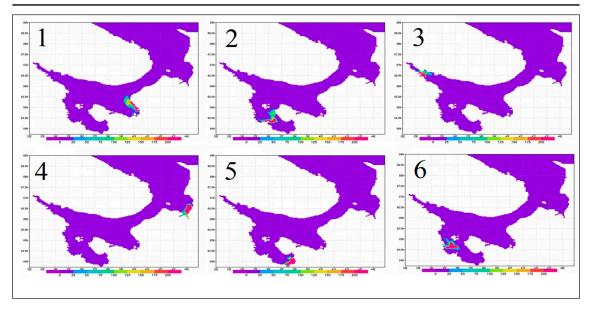


Рис. 2. Распространение нефтяного пятна из портов Белого моря на 10-е сутки после разлива (1 – Архангельск, 2 – Беломорск, 3 – Кандалакша, 4 – Мезень, 5 – Онега, 6 – Кемь) Примечание: составлено авторами по результатам данного исследования

Учитывая систему течений в Онежском заливе, пятно из порта Беломорск (рис. 2 (2)) в первую очередь будет стремиться на юг, при этом размываясь и растягиваясь на мелководье, встречая сопротивление во фронтальной зоне центральной части залива, где происходит изменение его формы, и часть вещества направляется на север. От Кандалакши (3) пятно нефти достаточно быстро распространяется на юг, но в то же время «растаскивается» течениями вдоль берега, а какая-то часть может попасть в квазипостоянный вихрь на границе Кандалакшского залива и Бассейна. Кроме этого, Кандалакшский залив и Бассейн – наиболее глубокие районы моря. Если примесь достаточно быстро оседает на дно (не в случае нефти), то значительная его часть будет захораниваться в глубоководных участках, в меньшей степени попадая на берега.

Гипотетический разлив нефти в Мезенском заливе (4) менее опасен для центральной части моря, поскольку течения направят его на север в сторону Воронки вдоль правого берега, однако, учитывая квазипостоянные вихри Воронки, часть вещества снова может попасть в Горло, а, следовательно, оказаться в центральной части моря, в Бассейне. Причем распространение пятна загрязнителя здесь происходит быстрее по сравнению с другими заливами, поскольку скорости течений в этом районе

моря высокие. В районе устьевой области р. Онеги (5) действует своеобразная гидродинамическая ловушка, о которой авторы сообщали ранее [14], и вещество здесь может удерживаться в течение многих месяцев и даже лет. Поэтому данный район можно назвать наиболее уязвимым в Белом море. Об этом также свидетельствуют исследования [9; 10]. Пятно из порта г. Кемь (п. Рабочеостровск) (6) в целом ведет себя так же, как из г. Беломорска. Оно в большей степени распространится на юг, загрязняя Онежский залив. Однако в зоне действия фронтальных зон, расположенных в проливах Соловецкие Салмы, часть вещества задержится возле Соловецкого архипелага.

Таким образом, аварии в портах Кемь и Беломорск, вероятно, могут причинить наибольший ущерб прибрежным экосистемам Белого моря, поскольку примесь последовательно будет проходить из Онежского залива, надолго в нем задерживаясь, далее распространяться в Бассейн, Двинский залив, Горло, смещаясь течениями в сторону берега.

Наибольший интерес представляет моделирование распространения мазута, поскольку его попадание в море более вероятно, по сравнению с сырой нефтью. Был рассмотрен случай утечки мазута марки М-100 у островов Осинки в Онежском заливе в 2003 г. [1, с. 33-34], и данная авария была смоделирована и показано ее влияние на другие районы моря (рис. 3).

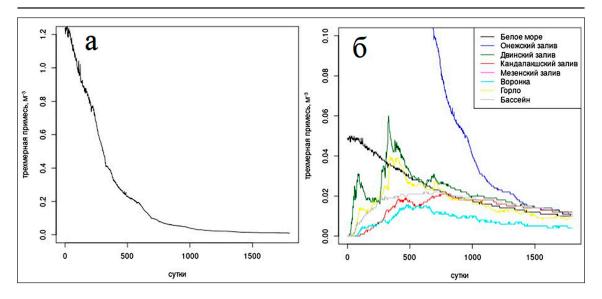


Рис. 3. Концентрация трехмерной примеси (мазута) в Онежском заливе (а) и в различных районах моря после его попадания из Онежского залива (б) Примечание: составлено авторами по результатам данного исследования

В данной работе авторы не ставили своей задачей показать воздействие на экосистемы Белого моря, оценки этих процессов представлены, например, в [9; 10]. Здесь авторы показывают только модельный перенос мазута, удержание и вынос пятна, учитывая его частичное оседание на дно.

На графике левой части рисунка За видно, что время нахождения мазута в Онежском заливе, после его попадания в этот залив, составит почти 5 лет. Это самый большой срок по сравнению с другими районами моря (рис. 36).

В работах [9; 10] показано, через 2 года после аварии 2003 г. сгустки мазута еще находились на мелководье и побережье залива, несмотря на то что примерно 9 т было собрано в первый год. В течение еще нескольких лет следы мазута обнаруживались. В 2012 г. была проведена экспедиция [10], результаты которой показали, большая часть мазута к этому времени утилизирована. Тем не менее локальные источники вторичного загрязнения фиксировались на западном берегу Онежского залива и в 2013 г.

Согласно расчетам (рис. 3б), вещество из Онежского залива попадет в Бассейн и Двинский залив. Изначально концентрация мазута в Онежском заливе после аварии высокая, поэтому синяя линия резко отличается от остальных. Учитывая размеры и объем воды каждого района, для Двинского залива загрязнение скажется более остро по сравнению с Бассейном, что и наблюдаем на графиках. Часть мазутного

пятна из Двинского залива может попасть в Бассейн, кроме этого, сам загрязнитель может поступать в соседний залив порциями. Это видно по второму пику графика для Двинского залива (рис. 36). Так, концентрация вещества, понизившись до 0,02 м⁻³, затем снова повышается до 0,06 м⁻³ и далее продолжает равномерно снижаться через 2 года с момента аварии до полного очищения залива через несколько лет. Это хорошо согласуется с данными наблюдений [10]. Из Горла пятно нефтепродуктов следует в Мезенский залив и Воронку. По мере разбавления концентрация мазута в Горле и Воронке последовательно снижается. Для Онежского залива концентрация понизится до значения 0,02 м-3 только на 4-й год, а до полного очищения залива должен пройти еще около 1 года. По черной линии на рисунке 3б понятно, что авария в Онежском заливе оказывает значительное влияние на весь водоем, поскольку время нахождения мазута в море в любом случае исчисляется годами. Согласно модельным расчетам, все районы Белого моря испытали воздействие утечки мазута в 2003 г.

Заключение

Воспроизведено распределение нефтяного пятна из портов Белого моря. При критическом отсутствии данных наблюдений представлены трассеры и время распространения данного вида загрязнителя из портов Белого моря на 10-е сутки после разлива, тенденции перемещения пятна

нефти. Показано, что наибольшую опасность в плане утечек мазута и нефти представляет Онежский залив. Загрязнитель из этого района моря будет последовательно проходить из самого залива, надолго в нем задерживаясь (несколько лет), далее распространяться в Бассейн, Двинский залив, Горло, смещаясь течениями в сторону берега. Была смоделирована авария сентября 2003 г. в Онежском заливе, когда в воду поступило 54 т мазута, и рассмотрено влияние этой аварии на все районы моря. Согласно модельным расчетам, после аварии мазут находился в Онежском заливе около 5 лет, результаты согласуются с данными, имеющимися в открытых источниках. Представление нефти как плавучей примеси, а мазута как трехмерной примеси при моделировании оправдано с точки зрения учета их распространения в морской среде в зависимости от характера течений и ветровых условий. Программный комплекс JASMINE позволяет задавать концентрацию вещества и скорость его осаждения.

Список литературы

- 1. Бамбуляк А., Францен Б. Транспортировка нефти из Российской части Баренцева моря по состоянию на январь 2005 года // Отчет. Сванховд Экологический центр. 2005. 92 с. URL: https://www.nhm.uio.no/kunnskapsunivers/zoologi/fugl/ringmerking/PDF/OII_Report_Russian_net.pdf (дата обращения: 28.08.2025).
- 2. Александрова А.Г., Александрова Н.В. Нефтяные загрязнения на морской поверхности (моря Западной Арктики) // Геополитика и экогеодинамика регионов. 2023. Т. 9(19). Вып. 1. С. 221-231. URL: https://cyberleninka.ru/article/n/neftyanye-zagryazneniya-na-morskoy-poverhnosti-morya-zapadnoy-arktiki (дата обращения: 28.08.2025).
- 3. Зацепа С.Н., Ивченко А.А., Книжников А.Ю., Солбаков В.В. Подход к анализу гидрометеорологических условий, определяющих задержку в реагировании на морские разливы нефти в Арктической зоне Российской Федерации // Арктика: экология и экономика. 2023. Т. 13. № 3. С. 369—381. URL: http://arctica-ac.ru/article/647/ (дата обращения: 28.08.2025). DOI: 10.25283/2223-4594-2023-3-369-381.
- 4. Bonvicini S., Bernardini G., Scarponi G. E., Cassina L., Collina A., Cozzani V. A methodology for Response Gap Analysis in offshore oil spill emergency management. Marine Pollution Bulletin. 2022. Vol. 174. P. 113272. URL: https://pubmed.ncbi.nlm.nih.gov/35090267/ (дата обращения: 28.08.2025). DOI: 10.1016/j.marpolbul.2021.113272.
- 5. Немировская И.А., Флинт М.В. Особенности поведения органических соединений в воде и донных осадках в Карском море во время схода сезонного льда // Океанология. 2022. Т. 62. № 1. С. 64–74. URL: https://sciencejournals.ru/view-article/?j=danzem&y=2021&v=498&n=1&a=DA NZem2105012Nemirovskaya (дата обращения: 28.08.2025). DOI: 10.31857/S0030157422010117.
- 6. Глязнецова Ю.С., Нимировская И.А., Флинт М.В. Изучение последствий аварийного разлива дизельного топлива в Норильске // Доклады Российской Академии наук. Науки о Земле. 2021. 501(1) С. 113-118. URL: https://sciencejournals.ru/view-article/?j=danzem&y=2021&v=501&n=1&a=D ANZem2111005Glyazentsova (дата обращения: 28.08.2025). DOI: 10.31857/S2686739721110050.

- 7. Немировская И. А., Храмцова А. В. Углеводороды в поверхностном микрослое и льдах Карского моря // Доклады Российской академии наук. Науки о Земле. 2023. Т. 508. № 1. С. 44-49. EDN: GBIIHZ. URL: https://journals.rcsi.science/2686-7397/article/view/135711/113645 (дата обращения: 28.08.2025). DOI: 10.31857/S2686739722601739.
- 8. Гончаров В.К. Исследование взаимодействия нефти с морским ледовым покровом // Прикладная механика и техническая физика. 2023. Т. 64. № 1. URL: https://www.sibran.ru/upload/iblock/4e0/4e067114a22d07e070477ba-0f57a4bcd.pdf (дата обращения: 28.08.2025). DOI: 10.15372/PMTF202215112.
- 9. Андрианов В.В., Лукин Л.Р., Лебедев А.А., Неверова Н.В. Долговременные последствия аварийного разлива нефтепродуктов в южной части Онежского залива Белого моря // Биология моря. 2016. Т. 42. № 3. С. 169–178. URL: https://cyberleninka.ru/article/n/posledstviya-avariynogo-razliva-nefteproduktov-v-yuzhnoy-chasti-onezhskogo-zaliva-belogo-morya (дата обращения: 28.08.2025).
- 10. Воробьева Т.Я., Неверова Н.В., Андрианов В.В. Оценка долговременных последствий загрязнения мазутом прибрежных сообществ в Онежском заливе Белого моря // Биология моря. 2020. Т. 46. № 3. С. 191-199. URL: https:// new.ras.ru/upload/iblock/c24/xmalyszy1bwxg80phl9g93p7ei-75wdj5.pdf (дата обращения: 28.08.2025). DOI: 10.31857/S0134347520030122.
- 11. Совершенствование системы реагирования на аварийные разливы нефти и нефтепродуктов в арктических условиях для защиты особо чувствительных к нефтепродуктам прибрежных районов (на примере Баренцева и Белого морей) // Технический отчет. Т. 1. Мурманск: ООО «Рамболь Баренц». 2010. 218 с. URL: https://archive.iwlearn.org/npa-arctic.iwlearn.org/Documents/demos/new/rprts/models_white-sea-os.pdf (дата обращения: 28.08.2025).
- 12. Шильникова Е. А., Рослякова О.В. Процесс моделирования разложения нефтепродуктов в воде // Научные проблемы водного транспорта. 2023. № 75(2). DOI: 10.37890/jwt. vi75.380. URL: https://cyberleninka.ru/article/n/protsess-modelirovaniya-razlozheniya-nefteproduktov-v-vode (дата обращения: 28.08.2025).
- 13. Шалымова А.Е., Исахов А.А. Численное моделирование распространения нефти и нефтепродуктов при аварийном разливе на водной поверхности // Вестник Казахстанско-Британского технического университета. 2024. 21(2) С. 139-151. URL: https://vestnik.kbtu.edu.kz/jour/article/view/1261 (дата обращения: 28.08.2025). DOI: 10.55452/1998-6688-2024-21-2-139-151.
- 14. Чернов И.А., Толстиков А.В. Численное моделирование распространения пассивных примесей в Белом море // Теоретическая и прикладная экология. 2023. № 3. С. 21-27. URL: http://www.envjournal.ru/ari/v2023/v3/23302.pdf (дата обращения: 28.08.2025). DOI: 10.25750/1995-4301-2023-3-021-027.
- 15. Chernov I., Lazzari P., Tolstikov A., Kravchishina M., Iakovlev N. Study Hydrodynamical and biogeochemical spatio-temporal variability in the White Sea: A modeling // Journal of Marine System. 2018. Vol. 187. P. 23-35. URL: https://www.sciencedirect.com/science/article/pii/S0924796317300672. (дата обращения: 28.08.2025). DOI: 10.1016/j.jmarsys.2018.06.006.
- 16. Яковлев Н.Г. О воспроизведении полей температуры и солености Северного Ледовитого океана // Известия РАН. 2012. ФАО. Т. 48. № 1. С. 100-116.
- 17. Meier H.E.M., Höglund A. Studying the Baltic Sea Circulation with Eulerian Tracers // Soomere T., Quak E. Preventive Methods for Coastal Protection. 2013. Springer, Heidelberg. P. 101-129. URL: https://link.springer.com/chapter/10.1007/978-3-319-00440-2_4 (дата обращения: 28.08.2025). DOI: 10.1007/978-3-319-00440-2_4.
- 18. Gent P.R., McWilliams J.C. Isopycnal mixing in ocean circulation models // Journal of Physical Oceanography. 1990.

- №20 (1). P. 150-155. URL: https://pordlabs.ucsd.edu/pcessi/the-ory2016/gent_mcwilliams_90.pdf (дата обращения: 28.08.2025).
- 19. The NOAA Physical Sciences Laboratory (PSL). NCEP-NCAR Reanalysis 1. [Электронный ресурс]. URL: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (дата обращения: 28.08.25).
- 20. Толстиков А.В., Филатов Н.Н., Богданова М.С., Литвиненко А.В., Карпечко В.А., Дерусова О.В., Балаганский А.Ф. Электронный атлас Белого моря и его водосбора // База данных. Свидетельство о государственной регистрации № 2017620252 от 01 марта 2017.
- 21. Глуховский Б.Х. Гидрометеорология и гидрохимия морей СССР // Справочник «Проект «Моря СССР». Белое море. Т. II. Вып. 1. Гидрометеорологические условия. Л.: Гидрометеоиздат. 1991. 240 с.
- 22. Демиденко Н.А. Динамика взвешенного вещества и динамика седиментации в макроприливных эстуариях Мезени и Кулоя // Известия РАН. Серия географическая, 2022. Т. 86. № 6. C. 1002-1022. EDN: OOMYUG. URL: https://science-journals.ru/view-article/?j=izvgeo&y=2022&v=86&n=6&a=Iz-vGeo2206004Demidenko (дата обращения: <math>28.08.2025). DOI: 10.31857/S2587556622060048.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

Финансирование: Данное исследование выполнено в рамках государственного задания Института водных проблем Севера Карельского научного центра РАН по теме № FMEN-2021-0004 «Комплексные исследования Белого моря и водосбора в интересах развития Арктической зоны РФ».

Financing: This study was carried out within the framework of the state assignment of the Institute of Water Problems of the North of the Karelian Scientific Center of the Russian Academy of Sciences on topic No. FMEN-2021-0004 "Comprehensive studies of the White Sea and watershed in the interests of the development of the Arctic zone of the Russian Federation".

СТАТЬЯ

УДК 622.33:543.429.23 DOI 10.17513/use.38441

ПРИМЕНЕНИЕ МЕТОДА ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА ДЛЯ ИССЛЕДОВАНИЯ ГАЗОНОСНОСТИ ТРЕЩИНОВАТЫХ УГЛЕЙ

Рыбалкин Л.А. ORCID ID 0000-0003-2648-1909, Шилова Т.В. ORCID ID 0000-0001-5056-9279, Азаров А.В., Шажко Я.В.

ФГБНУ Институт физики горных процессов, Россия, Донецк, e-mail: Leonid.Rybalkin@gmail.com

Изучение метаноносности и фильтрационной способности ископаемых углей является актуальной задачей при разработке глубокозалегающих газоносных пластов в сложных горно-геологических условиях. Применение методов ядерного магнитного резонанса при исследовании газонасыщенных углей в сочетании с воздействием на внутреннюю структуру образцов перспективно для решения этих задач. Целью работы является оценка эффективности методов ядерного магнитного резонанса для исследования изменения общей пористости и метаноносности углей. Методы исследования включают анализ карт Т1/Т2 угольных образцов до и после воздействия на внутрипоровое пространство образцов импульсами сжатого газа, полученных с помощью релаксометрии ядерного магнитного резонанса и спектральных кривых угольных проб из зоны геологического нарушения до и после насыщения газом метаном после одноосного нагружения, полученных спектроскопией ядерного магнитного резонанса. Полученные результаты демонстрируют, что использование методов спектроскопии ядерного магнитного резонанса, как средства мониторинга при отработке глубокозалегающих углей в сложных горно-геологических условиях, эффективно и позволяет своевременно и качественно оценивать изменение водородсодержащих соединений и внутренней структуры углей. Вместе с тем в современных источниках приведено мало результатов изучения углей методами спектроскопии ядерного магнитного резонанса при внешних физических воздействиях. Необходимо развивать это направление, уделить особое внимание работе с насыщенными метаном образцами, что позволит прогнозировать результаты полевых работ при разработке газоносных пластов.

Ключевые слова: уголь, водородсодержащие компоненты, спектроскопия ядерного магнитного резонанса, температура, малоподвижный и подвижный водород

APPLICATION OF NUCLEAR MAGNETIC RESONANCE METHOD FOR STUDYING GAS CONTENT IN FRACTURED COALS

Rybalkin L.A. ORCID ID 0000-0003-2648-1909, Shilova T.V. ORCID ID 0000-0001-5056-9279, Azarov A.V., Shazhko Ya.V.

Institute of Physics of Mining Processes, Russia, Donetsk, e-mail: Leonid.Rybalkin@gmail.com

The research of methane content and filtration capacity of fossil coal is an important task in the development of deep-laying gas-bearing formations under complex geological conditions. In gaseous coal studies the application of nuclear magnetic resonance techniques, combined with effects on the internal structure of samples, is promising for these purposes. The aim of this work is to assess the effectiveness of nuclear magnetic resonance techniques in examining the change in total porosity and methane content of coal. The research methods include analysis of T1/T2 maps of coal samples before and after their interstitial space is exposed to the compressed gas impulses. The maps are obtained with nuclear magnetic resonance relaxometry. Also, the research methods include analysis of spectral curves of coal samples from the zone of geological disturbance before and after saturation with methane gas after uniaxial loading, the curves are obtained with nuclear magnetic resonance spectrometry. The obtained results demonstrate that nuclear magnetic resonance spectroscopy methods are effective for the monitoring of development of deep-settling coals in complex mining geological conditions, and they enable timely and high-quality evaluation of changes in hydrogen-containing compounds and the internal structure of coal. At the same time, modern works provide few results of coal research performed by nuclear resonance spectroscopy, the coal being under external physical influences. It is necessary and important to develop this trend and to pay special attention to works with saturated methane samples, which will provide the opportunity to predict the results of field works in the development of gas-bearing seams.

Keywords: coal, hydrogen-containing components, nuclear magnetic resonance spectroscopy, temperature, low-mobility and mobile hydrogen

Введение

В настоящее время рост масштабов подземной добычи угля напрямую связан с разработкой глубокозалегающих пластов. По мере увеличения глубины разработки месторождений горно-геологические условия непрерывно ухудшаются. Возрастание газонасыщенности угля с глубиной, а также проведение работ в областях тектонических разломов провоцирует выбросы горной породы и газа, сопровождаемые внезапными газодинамическими явлениями [1]. Все это повышает риски возникновения аварийных ситуаций, ухудшает условия труда в шахтах, вызывает непредвиденные остановки и снижает экономические показатели добычи [2]. Своевременно полученная информация о структурных особенностях угольного массива и о содержащихся в нем газообразных углеводородах необходима для повышения безопасности работ при подземной разработке месторождений на больших глубинах [3; 4], добычи метана в виде самостоятельного энергетического ресурса [5], определения качественных характеристик извлеченного сырья. Перспективными методами исследования петрофизических особенностей и свойств угольных пластов и содержащихся в них флюидов являются методы, основанные на явлении ядерного магнитного резонанса (ЯМР).

Исследования, проводимые с помощью метода релаксометрии ядерного магнитного резонанса (ЯМР-релаксометрии), направлены на получение широкого спектра информации об угольном веществе. Большинство работ посвящено изучению адсорбции метана в углях [6; 7]. Ряд исследований направлен на установление соотношения открытых и закрытых пор [8; 9] и получение информации о характере фильтрационных каналов [10]. Другой областью применения данного подхода является получение информации о распределении газа в пустотном пространстве [11]. В то же время метод ЯМР-релаксометрии не позволяет дать оценку составных частей химических соединений, входящих в состав исследуемого образца и содержащихся в нем флюидов. Для этого используются методы ЯМР-спектроскопии.

Основной отличительной особенностью метода ¹Н-спектроскопии ядерного магнитного резонанса (¹Н ЯМР-спектроскопия) является возможность разделения водородсодержащих соединений, входящих в состав исследуемого образца [12; 13]. При исследовании углей данный метод активно используется для анализа и оценки содержания ме-

тана [14; 15]. Техническая реализация метода позволяет отделить адсорбированный газ от остальных соединений [16; 17], в том числе органического происхождения. Большое внимание уделяется изучению распределения основных химических элементов (углерод, водород, кислород с примесями азота, сера) в угольном веществе [18; 19].

В настоящее время в современных литературных источниках основной акцент в работах, посвященных анализу углей методами ЯМР, сделан на исследовании вещественного состава и петрофизических свойств. Однако данные методы могут быть использованы для анализа изменения способности угольного вещества к накоплению и последующей отдаче пластового газа, например, при ведении работ по дегазации пластов в зонах с нарушенной структурой массива. Традиционные методы исследования, включающие бурение дегазационных скважин для оценки газоотдачи и проведение детальной геологической съемки с целью выявления систем естественной трещиноватости в приразломной зоне, характеризуются значительной трудоемкостью и требуют продолжительных временных затрат на получение репрезентативных данных. Применение методов ЯМР предоставляет возможность оперативного получения количественных данных о содержании пластового газа в пробах угля, отобранных из различных зон геологических нарушений. Таким образом, внедрение ЯМР-технологий в практику исследования угольных пластов с нарушенной структурой представляет собой перспективное направление, позволяющее существенно повысить эффективность мониторинга газосодержания и деформационных процессов в угольном массиве.

Цель исследования — оценить изменения общей пористости и метаноносности углей методами ЯМР.

Материалы и методы исследования

Первый этап работы был посвящен исследованию изменения объема пор и системы естественной трещиноватости угольных образцов после циклического повышения внутрипорового давления. В качестве материала исследования использовался трещиноватый уголь. Резкий рост давления в системе трещин и пор создавали пневмо-импульсами сжатого газа. Исследование изменения пористости и трещиноватости угля проводилось методом ЯМР-релаксометрии.

Лабораторные эксперименты проведены на слоистом мелкопористом длиннопламен-

ном газовом (ДГ) угле из Моховского разреза (Кузбасс). Использовали цилиндрические образцы (керны) диаметром 30 мм, высотой 55-60 мм. Общее количество образцов составило 15, которые помещали в термоусадочную непроницаемую трубку, стягивающую боковую поверхность и способствующую сохранению их целостности. Пневмовоздействие проводилось на лабораторной установке [20], обеспечивающей возможность расширенного регулирования среднего и отдельно от него дифференциального давлений газа в цилиндрическом образце угля, его осевого и бокового сжатия. Данная установка позволяет смоделировать природные условия на глубине примерно 100 м, где пластовое давление будет равняться 20-25 бар. Обрабатывались наименее проницаемые образцы плотного угля в условиях постоянного гидростатического сжатия $\sigma = 15$ бар. Обработка проводилась импульсами давления газа Р амплитудой от 5 до 10 бар. Был выполнен ряд серий воздействий (экспериментов), каждая из которых включала подачу 10 импульсов давления газа.

На втором этапе работы проводилось исследование изменения адсорбционной способности проб угля из зоны геологического нарушения после нагружения с последующим насыщением газом метаном. В качестве материала исследования выступали пробы угля марки Ж (жирный) шахты им. Скочинского (Донецкий угольный бассейн). Нагружение производили изменением осевого сжатия дробленого угольного материала. Изменение газоносности моделировали за счет насыщения проб в замкнутом объеме. Исследование содержания метана осуществляли методом ¹Н ЯМР-спектроскопии.

Отбор проб осуществлялся из шахтного поля пласта h_6 шахты им. Скочинского в зоне сжатия с 1,6 до 1,1 м. Место отбора проб характеризуется нарушением целостности и однородности породного массива с развитой системой естественных трещин. Пробы подвергались дроблению и просеиванию на ситах с максимальной ячейкой решетки 2,5 мм. Проба номер 1 не подвергалась сжимающим нагрузкам, в пробах 2, 3 и 4 они составили 1, 3 и 5 кбар соответственно.

Пробы были разделены на две группы – до и после обработки газом. Для насыщения отобранных проб угля был разработан лабораторный стенд в составе баллона со сжатым газом метаном, линии контроля подачи сжатого газа, камеры насыщения и системы размещения образцов. Исследование содержания газа метана в отобранных

пробах угля осуществлялось с помощью метода ¹Н ЯМР-спектрометрии. Работы были проведены с использованием спектрометра ЯМР высокого разрешения с резонансной частотой протонов 300 МГц. Использовался коммерческий радиочастотный датчик для образцов диаметром 10 мм. Спектры ЯМР ¹Н были зарегистрированы с приложением предварительно откалиброванного 90-градусного радиочастотного импульса. Шкала химических сдвигов (δ ¹H) была предварительно откалибрована по сигналу остаточных протонов в дейтерированной воде. Каждый спектр был зарегистрирован с 256-кратным накоплением сигнала (время задержки между спектрами составляло 250 мс, количество точек при сборе ССИ – 8192, время между точками при сборе ССИ – 41,6 мкс, спектральный диапазон – 40 м.д., общее время записи одного спектра – 341 мс). Обработка спектров проводилась в программе MestReNova.

Результаты исследования и их обсуждение

Методом ЯМР-релаксометрии были получены спектры поперечной релаксации Т2 (использовалась СРМG последовательность) и карты продольной-поперечной релаксации Т1/Т2 (использовалась IR-СРМG последовательность). Измерения проводились до пневматического воздействия и после пневматического воздействия с донасыщением жидкостью. Исследования выполнены на ЯМР-анализаторе «Місго12-040V» (производство Niumag, Китай) с индукцией магнитного поля 0,28 Тл, рабочей частотой 12 МГц и расстоянием между эхо-импульсами 0,1 мс, температура магнитной системы 32 °С.

На рис. 1 представлены спектры поперечной релаксации Т, до и после пневматического воздействия для образцов № 3 и 9 слоистого мелкопористого длиннопламенного газового (ДГ) угля. Спектры поперечной релаксации Т2 до пневматического воздействия имеют одномодальный вид с максимумом спектра на значении времени в среднем 0,57 мс. Средняя пористость образцов составляет 12,61% с минимальным и максимальным значениями 11,7 и 13,76% для образцов № 3 и 9 соответственно. Одномодальный вид спектра в зоне малых времен говорит о наличии флюида только в порах малого размера. После пневматического воздействия спектры поперечной релаксации Т2 приобретают бимодальный вид для всех исследованных образцов, что свидетельствует об изменении структуры порового пространства.

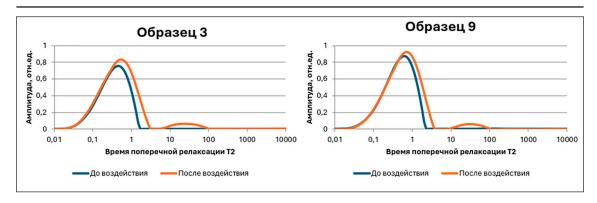


Рис. 1. Спектры поперечной релаксации T2 образцов № 3 и 9 до и после пневматического воздействия Источник: составлено авторами по результатам данного исследования

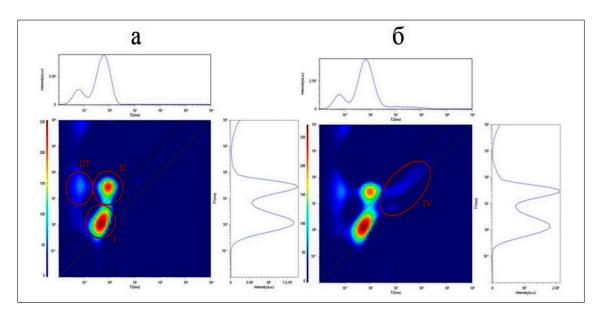
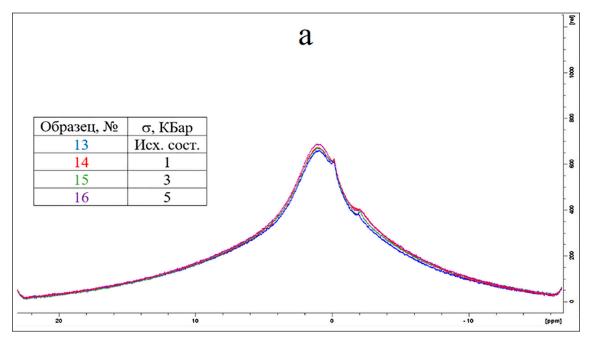


Рис. 2. Карты T1/T2 продольной и поперечной релаксации для образца № 9: а — до воздействия, б — после циклического увеличения порового давления Источник: составлено авторами по результатам данного исследования

Максимум части спектра, соответствующего порам малого размера, смещается в сторону увеличения значений времен и в среднем составляет 0,68 мс. Помимо этого, ширина моды этой части спектра увеличена, что говорит о появлении пор большего размера. Появление моды на временах 10–100 мс со средним значением максимума 27,11 мс свидетельствует о появлении пор крупного размера. Средняя пористость образцов составляет 20,41% с минимальным и максимальным значениями 14,78 и 17,24% для образцов № 10 и 3 соответственно.

Анализ карт продольной и поперечной релаксации T1/T2 основывается на различии характеристик T1 иT2 для флюидов. Для воды отношение $T1/T2 \sim 1$, тогда как для метана это отношение больше. В каче-


стве методики интерпретации результатов была взята представленная в работе карта измерений Т1 и Т2 для насыщенных флюидами образцов [21].

При анализе карт T1/T2 до пневматического воздействия можно выделить три основные зоны. Зона I — это глинисто-связанная вода в порах малого размера. Зона II — это метан в порах, у которого значения Т1 больше, чем значение Т2. Зона III — предположительно является битуминозной частью, так как значение Т2 для такого флюида гораздо меньше, чем Т1. По значению амплитуды можно сказать, что битуминозной группы в образцах мало по сравнению с другими флюидами. Остальные низкоамплитудные возмущения являются артефактами математической обработки. После пневматического

воздействия для всех образцов можно выделить зону IV, что соответствует воде в более крупных порах, так как значение T1/T2~1. Зоны I—III так же выделяются. Для всех образцов амплитуда зоны, соответствующей глинисто-связанной воде, становится больше, чем для зоны метана, что говорит об увеличении количества воды в образце.

Исследование изменения содержания газа метана в пробах угля из зоны геологического нарушения после одноосного

нагружения осуществлялось с помощью метода ¹Н ЯМР-спектроскопии. Работы были проведены с использованием спектрометра ЯМР высокого разрешения с резонансной частотой протонов 300 МГц. Обработка спектров проводилась в программе MestReNova. Результаты представляют собой набор спектральных линий для каждой пробы в исходном (без предварительного насыщения) и насыщенном газом метаном состоянии.

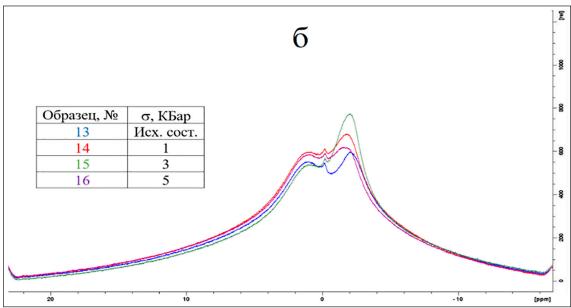


Рис. 3. ¹Н ЯМР-спектры, полученные для проб углей из шахтного поля пласта h_6 в зоне сжатия с 1,6 до 1,1 м шахты им. Скочинского: а – до насыщения; б – после насыщения газом метаном Источник: составлено авторами по результатам данного исследования

На рис. 3, а, представлены спектры проб 1—4 до насыщения газом метаном, которые представляют собой набор близкорасположенных линий с практически минимальной разницей в амплитуде сигнала. На спектральных линиях отчетливо выделяются два пика. Первый находится на отметке -1 горизонтальной шкалы и может расцениваться как остаточная вода в микропорах и пленках на берегах микротрещин мелкодисперсных гранул образцов. Второй пик на отметке -2 соответствует частоте соединений метана и может иллюстрировать долю остаточного газа метана в закрытых порах и скелете породы.

На рис. 3, б, представлены спектральные линии проб 1—4 после насыщения газом метаном. В данной спектральной картине отчетливо выделяются пики остаточной воды на отметке -1, а также значительное увеличение амплитуд пиков метана на отметке -2.

Изначальное содержание метана для каждого образца было практически одинаковым, с разницей менее 0,5%, и составляло порядка 400 у.е. После операции насыщения значения составили 600, 620, 679, 775 для образцов 1–4 соответственно. Наименьшее значение содержания газа метана соответствует пробе в исходном, то есть состоянии без последующего одноосного нагружения. Пробы после обработки осевой нагрузкой в 1 и 3 КБар демонстрируют прирост адсорбированного газа с практически линейной зависимостью увеличения газосодержания. Пробе 4 соответствуют наиболее низкие показатели метаноносности в серии осевого нагружения, однако она имеет самый широкий пик в серии, что говорит о большем количестве малоподвижных молекул метана. Подобная картина спектральных линий может свидетельствовать об увеличении несущей способности угля по газу метану после обработки вследствие развития микропроводящих каналов и перераспределения объемов открытой и закрытой пористости. Отчетливо выделяется зависимость изменения способности насыщения угля метаном от внешних воздействий в образцах из зон геологических нарушений.

Последующий анализ спектрограмм предполагает обработку в специализированных программных продуктах с последующим получением количественных характеристик полученных пиков спектрограмм ¹Н ЯМР-спектроскопии, например, в программе MestReNova. Однако данный этап требует дополнительной подготовки в виде выделения реферативного измерения мета-

ноносности на известных концентрациях в жидкостной или газообразной формах. Другой важной особенностью работ является долгосрочная операция по насыщению образцов угля, ввиду различного состава и физических свойств отобранных проб может быть неравномерное насыщение образцов в одной группе. Данная задача может быть решена путем подбора отдельных соединений или же определенных концентраций газообразного метана с целью создания набора реферативных значений для последующего анализа количественного содержания газа метана для каждого набора проб.

Заключение

Проведены экспериментальные серии по исследованию угольных образцов методами ЯМР. Результаты анализа карт Т1/Т2, полученных методом ЯМР-релаксометрии, показали, что данный метод является перспективным инструментом исследования трещиноватости и порового пространства углей с целью определения способности угля к адсорбции и фильтрации газа метана, а также может быть использован при контроле проводящего объема в угле вследствие изменения геомеханической обстановки при разработке угольных пластов шахтным способом.

Серия экспериментальных исследований проб угля из зоны геологического нарушения методом ¹Н ЯМР-спектроскопии позволила оценить изменение метаноносности в пробах угля после одноосного нагружения. Дальнейшие исследования в данной области позволят разработать подход к определению метаноносности отдельных областей угольных пластов, подверженных активной разработке или содержащих зоны геологических нарушений, как потенциально опасных по аккумулированию аномально высоких объемов пластового газа с последующим риском негативных газодинамических явлений.

Дальнейшее развитие данного направления позволит разрабатывать новые методы и подходы лабораторных исследований газоносных углей. На основе данных, полученных с применением высокоразрешающей спектрометрической аппаратуры, предполагается создание библиотеки референтных спектральных профилей для анализа большого количества проб из областей геологических нарушений, пересекаемых горными выработками при отработке угольных пластов. Ключевой задачей в данном контексте выступает исследование сорбционно-десорбционных характеристик метана в на-

сыщенных им угольных образцах, что является критически важным для построения достоверных прогнозных моделей при освоении глубокозалегающих угольных пластов в сложных горно-геологических условиях.

Список литературы

- 1. Васильев А.Н., Шишляев В.В., Кузнецов Р.В. Методические подходы к построению геолого-гидродинамических моделей для оценки снижения газоносности угольных пластов при проектировании заблаговременной дегазации шахтных полей // Проблемы недропользования. 2022. № 2 (33). С. 5–22. DOI: 10.25635/2313-1586.2022.02.005.
- 2. Pan Z., Connell L.D. Modelling permeability for coal reservoirs: a review of analytical models and testing data // International Journal of Coal Geology. March 2012. Vol. 92. P. 1–44. DOI: 10.1016/j.coal.2011.12.009.
- 3. Шилова Т.В., Рыбалкин Л.А., Яблоков А.В. Прогнозирование проницаемости трещиноватых углей в условиях естественного залегания // Физико-технические проблемы разработки полезных ископаемых. 2020. № 2. С. 75–85. DOI: 10.15372/FTPRPI20200209.
- 4. Черепанский М.М., Шишляев В.В. Моделирование эффектов изменения проницаемости угольных пластов при активных процессах десорбции метана и фильтрации пластового флюида // Горный журнал. 2019. № 10. С. 89–92. DOI: 10.17580/gzh.2019.10.13.
- 5. Мелехин Е.С., Кузина Е.С. Освоение невостребованных месторождений углеводородов как фактор рационального недропользования // Проблемы экономики и управления нефтегазовым комплексом. 2020. № 9 (189). С. 21–25. DOI: 10.33285/1999-6942-2020-9(189)-21-25.
- 6. Liu Z., Liu D., Cai Y., Yao Y., Pan Z., Zhou Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review // International Journal of Coal Geology. February 2020. Vol. 218. P. 103261. DOI: 10.1016/j.coal.2019.103261.
- 7. Chen X., Yan T., Zeng F., Meng Y., Liu J. Application of a modified low-field NMR method on methane adsorption of medium-rank coals // Geofluids. 2021. Vol. 2021, Is. 1. P. 16. DOI: 10.1155/2021/6621819.
- 8. Zheng S., Sang S., Liu S., Jin Z., Wang M., Lu S., Feng G., Yang Y., Hou J. An NMR-Based Method for Multiphase Methane Characterization in Coals // Energies. January 2022. Vol. 15, Is. 4. P. 1532. DOI: 10.3390/en15041532.
- 9. Yingfeng S., Lin Q., Zhu S., Han C., Wang X., Zhao W. NMR investigation on gas desorption characteristics in CBM recovery during dewatering in deep and shallow coals // Journal of Geophysics and Engineering. January 2023. Vol. 20, Is. 1. P. 12–20. DOI: 10.1093/jge/gxac090.
- 10. Ji X., Song D., Zhao H., Li Y., He K. Experimental analysis of pore and permeability characteristics of coal by low-field NMR // Applied Sciences. February 2018. Vol. 8, Is. 8. P. 1374. DOI: 10.3390/app8081374.

- 11. Liu Y., Wang C. Determination of the absolute adsorption isotherms of CH4 on shale with low-field nuclear magnetic resonance // Energy & Fuels. January 2018. Vol. 32, Is. 2. P. 1406–1415. DOI: 10.1021/acs.energyfuels.7b03428.
- 12. Cheng Y., Jiang H., Zhang X., Cui J., Song C., Li X. Effects of coal rank on physicochemical properties of coal and on methane adsorption // International Journal of Coal Science & Technology. March 2017. Vol. 4, Is. 2. P. 129–146. DOI: 10.1007/s40789-017-0161-6.
- 13. Рыбалкин Л.А., Понамарева Е.А., Шилова Т.В., Сердюк И.М. Использование методов ядерного магнитного резонанса для исследования метана в углепородном массиве // Фундаментальные и прикладные вопросы горных наук. 2024. Т. 11. № 3. С. 42–49. DOI: 10.15372/FPVGN2024110307.
- 14. Yan H., Nie B., Peng C., Liu P., Wang X., Yin F., Lin S. Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio // Energy & Fuels. October 2021. Vol. 35, Is. 21. P. 17602–17616. DOI: 10.1021/acs.energyfuels.1c02658.
- 15. Lin B., Song H., Zhao Y., Liu T., Kong J., Huang Z. Significance of gas flow in anisotropic coal seams to underground gas drainage // Journal of Petroleum Science and Engineering. September 2019. Vol. 180. P. 808–819. DOI: 10.1016/j.petrol.2019.06.023.
- 16. Mohamed T., Mehana M. Coalbed methane characterization and modeling: review and outlook // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. November 2020. P. 1–23. DOI: 10.1080/15567036.2020.1845877.
- 17. Мусин Р.А., Асанова Ж.М., Халикова Э.Р., Джусупов Н.Д., Голик А.В. Разработка технологических критериев оценки для выбора перспективных участков добычи угольного метана // Уголь. 2024. Т. 1179. № 4. С. 102–108. DOI: 10.18796/0041-5790-2024-4-102-108.
- 18. Smirnov V.G., Lyrschikov S.Y., Manakov A.Y., Rodionova T.V., Ismagilov Z.R. High-resolution 1H MAS NMR spectra of water sorbed by various types of coals // International Journal of Coal Preparation and Utilization. December 2024. P. 1–22. DOI: 10.1080/19392699.2024.2441841.
- 19. Li H., Xu C., Ni G., Lu J., Lu Y., Shi S., Ye Q. Spectroscopic (FTIR, 1H NMR) and SEM investigation of physicochemical structure changes of coal subjected to microwave-assisted oxidant stimulation // Fuel. June 2022. Vol. 317. P. 123473. DOI: 10.1016/j.fuel.2022.123473.
- 20. Рыбалкин Л.А., Сердюков С.В., Шилова Т.В., Сердюк И.М., Ефремов Р.А. Лабораторная установка и методика экспериментальных работ по циклическому пневмовоздействию на угольный материал // Фундаментальные и прикладные вопросы горных наук. 2024. Т. 11. № 3. С. 50–56. DOI: 10.15372/FPVGN2024110308.
- 21. Elsayed M., Isah A., Hiba M., Hassan A., Al-Garadi K., Mahmoud M., El-Husseiny A., Radwan A. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: laboratory and field-scale measurements // Journal of Petroleum Exploration and Production Technology. March 2022. Vol. 12, Is. 11. P. 2747–2784. DOI: 10.1007/s13202-022-01476-3.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

Финансирование: Работа выполнена в рамках деятельности Молодежной лаборатории исследования электромагнитных свойств угля и горных пород Института физики горных процессов.

Financing: The work was carried out within the framework of the activities of the Youth Laboratory for the Study of Electromagnetic Properties of Coal and Rocks of the Institute of Physics of Mining Processes.

СТАТЬИ

УДК 528.486.023 DOI 10.17513/use.38442

ИССЛЕДОВАНИЕ ТОЧНОСТИ КИНЕМАТИКИ В РЕАЛЬНОМ ВРЕМЕНИ С ИСПОЛЬЗОВАНИЕМ ВИРТУАЛЬНОЙ БАЗОВОЙ СТАНЦИИ

Жимагулов Д.К.

ФГБОУ ВО «Московский государственный университет геодезии и картографии», Россия, Москва, e-mail: fazmatis@gmail.com;

ГБУ «Центр экспертиз, исследований и испытаний в строительстве», Россия, Москва

В статье проведено исследование определения плановых координат с помощью спутникового оборудования в режиме кинематики в реальном времени, в том числе с использованием технологии виртуальной базовой станции. Целью статьи является определение средней квадратической погрешности определения плановых координат в режиме кинематики в реальном времени с использованием технологии виртуальной станции, а также определение средней квадратической погрешности виртуальной базовой станции; выявление зависимости между погрешностями определения плановых координат при холодном старте спутникового оборудования и при последовательном определении плановых координат (в рамках одного цикла наблюдений). В качестве полевых материалов рассмотрены 5 серий измерений в режиме кинематики в реальном времени с использованием технологии виртуальной станции. В каждой серии измерений выполнено 3 цикла наблюдений, каждый цикл состоял из определения плановых координат трех точек. В результате исследований установлено, что использование технологии виртуальной станции уменьшает среднюю квадратическую погрешность определения плановых координат на 36% по сравнению с классическим режимом кинематики в реальном времени. Средняя квадратическая погрешность определения виртуальной базовой станции равна нулю. Существенной разницы между определением координат при холодном старте и при последовательном определении не установлено.

Ключевые слова: кинематика в реальном времени, технология виртуальной базовой станции, ровер, средняя квадратическая погрешность, спутники, геодезия

Благодарности: Автор выражает благодарность за ценные советы и наставления к.т.н., доценту МИИГАиК Насереддину Х.Х. и начальнику отдела геодезического контроля ГБУ «ЦЭИИС» Соколову Н.Е.

REAL-TIME KINEMATIC ACCURACY STUDY USING A VIRTUAL BASE STATION

Zhimagulov D.K.

Moscow State University of Geodesy and Cartography, Russia, Moscow, e-mail: fazmatis@gmail.com;

SBI "Center for Expertise, Research and Testing in Construction", Russia, Moscow

In this article, studies have been conducted on the determination of planned coordinates using satellite equipment in real-time kinematics mode (including using virtual base station technology). The purpose of the article below is to determine the average square error of determining the planned coordinates in real-time kinematics mode using virtual station technology, and to determine the average square error of the virtual base station. Identification of the relationship between the error in determining the planned coordinates during the cold start of satellite equipment and the sequential determination of the planned coordinates (within the framework of one observation cycle). 5 series of measurements in real-time kinematics mode and 3 series of measurements in real-time kinematics mode using virtual station technology were considered as field materials. In each series of measurements, 3 observation cycles were performed, each observation cycle consisted of determining the planned coordinates of three points. As a result of the research, it was found that the use of virtual station technology reduces the average square error in determining the virtual base station is zero. There is no significant difference between the determination of coordinates at a cold start and at a sequential determination.

Keywords: real-time kinematics, virtual base station technology, average square error, rover, satellites, geodesy

Acknowledgements: The author expresses gratitude for valuable advice and guidance to PhD, Associate Professor MIIGAiK Nasereddin Kh.Kh. and Head of the Geodetic Control Department of the State Budgetary Institution «TsEIIS» Sokolov N.E.

Введение

В настоящее время широко распространено применение спутниковых технологий для решения геодезических задач. Одним из основных аргументов при выборе выше-

указанной технологии является экономия времени и трудозатрат. Наиболее популярным режимом измерений спутниковым оборудованием является кинематика в реальном времени (далее – RTK). Реализация

такого метода предполагает непрерывную связь со спутниковой группировкой, базовой станцией и ровером [1]. Ключевые преимущества RTK над другими режимами:

- использование дифференциальных поправок от базовых станций, что, в свою очередь, позволяет компенсировать влияние атмосферы при определении псевдодальности [2];
- возможность получения координат искомой точки в режиме реального времени;
- отсутствие необходимости во втором комплекте спутникового оборудования, так как пользователь имеет возможность получить поправки от сетей базовых станций, доступ к которым предоставляется провайдерами таких сетей;
- приемлемая точность для большинства геодезических работ [3, 4].

Несмотря на вышеуказанные преимущества, режим RTK имеет ограничение в предельном расстоянии от базовой станции до 30 км [5]. Следует упомянуть о снижении точности определения координат при увеличении расстояния до базовой станции. В качестве примера рассмотрим приемник EFT M4 GNSS [6]. Его априорная средняя квадратическая погрешность (далее – СКП) в плане имеет следующие характеристики: ± 5 мм +0.5 мм/км. Из чего следует, что на условном нулевом километре от базовой станции точку можно определить с точностью в 5 мм, на 10-м километре -10 мм и на 20-м -15 мм соответственно [3]. Частично такое положение дел складывается из-за того, что ионосфера и тропосфера неоднородны по своей природе, а задержки прохождения сигнала через эти сферы вносят ключевой вклад в ухудшение точности получения координат спутниковым методом [7]. Технология виртуальных базовых станций (далее -VRS) призвана скомпенсировать вышеизложенные ошибки. Реализуется она по следующему принципу:

- при инициализации приемники пользователя отправляют свое примерное местоположение сети базовых станций;
- сеть, анализируя местонахождение пользователя, передает усредненную корректирующую информацию от ближайших базовых станций;
- сеть программно создает виртуальную базовую станцию (далее bVRS) вблизи пользователя (на расстояние 10-15 м) и генерирует набор виртуальных измерений [8, 9].

Не возникает сомнения, что технология VRS должна повысить точность определения координат спутниковым методом, так как в том числе возникает фактор избыточных измерений [10]. Но неясно,

на какую величину она улучшится. Возвращаясь к априорной СКП в плане спутникового оборудования ± 5 мм +0.5 мм/км, очевиден следующий тезис. Так как bVRS генерируется в непосредственной близости от пользователя, то априорная СКП будет ± 5 мм +0.5 мм, то есть 5 мм. Но при таком подходе не учитывается, с какой точностью в плановом положении была сгенерирована виртуальная станция. В свою очередь, оценить точность bVRS прямыми измерениями не представляется возможным.

В целом априорная СКП, указанная в технических характеристиках спутникового оборудования, говорит о том, что оборудования способно определить координаты с указанной точностью после холодного старта. Что, в свою очередь, не отображает точностные характеристики взаимного расположения определяемых пунктов в рамках одного цикла измерений. В качестве примера предположим, что после инициализации спутникового оборудования было определено плановое положение нескольких точек. Точность определения координат этих точек должна быть приближена к априорной СКП, но точность определения взаимного расположения точек относительно друг друга остается нераскрытой.

Для упрощения восприятия нижеизложенного текста введем ряд определений.

Холодная погрешность — это погрешность определения координат после инициализации оборудования, предположительно может быть систематической для ряда определений координат в рамках одного цикла измерений.

Относительная погрешность — это погрешность определения приращений координат между наблюдаемыми точками и/ или базисов образуемых между точками, предположительно может быть независима от холодной погрешности.

Цель исследования — определить фактическую среднюю квадратическую погрешность координат виртуальной станции как следствие, уточнить СКП спутникового оборудования при использовании технологии VRS. Определить холодную и относительную погрешности для режима измерений в RTK и для режима измерений в RTK и для режима измерений RTK с использованием технологии VRS.

Материалы и методы исследования

Исследование точности кинематики в реальном времени проводилось на двух объектах:

– ЖК «Квартал Герцена», расположенный по адресу: г. Москва, Бирюлево Восточное, 25–26 км МКАД;

– комплексная жилая застройка по адресу: Московская область, городской округ Балашиха, квартал «Б» (далее квартал – «Б»).

В качестве спутникового оборудования был использован приемник EPOCH 35, априорная СКП в плане в режиме RTK равна ± 10 мм +1 мм/км, базовая станция находилась на удалении примерно 4 км, за исключением серий измерений от 29.05.2025.

Исследования точности кинематики в реальном времени с использованием виртуальной базовой станции делились на полевые и камеральные работы.

Полевые работы заключались в нижеизложенном:

- цикл наблюдения представлял собой определение плановых координат в режиме RTK и/или в режиме VRS, в рамках одного цикла координаты определялись для трех жестко закрепленных на местности точек;
- измерение расстояний между точками при помощи тахеометра;
- в рамках одного рабочего дня проводилось не менее трех циклов наблюдений.

Камеральная обработка данных заключалась в определении фактической СКП для двух режимов наблюдений [11]. Определение отклонений базисов (расстояний) между координатами точек, полученных с помощью спутникового оборудования, по отношению к линейным размерам, полученным с помощью электронного тахеометра.

Результаты исследования и их обсуждение

Есть вероятность того, что относительная погрешность координатных определений может быть свободна или частично ослаблена от влияния тропосферы, так как наблюдения проводятся в относительно близком временном промежутке и тропосфера остается относительно неизменной. Наиболее репрезентативно, по мнению автора, будет проанализировать длину базисов между точками, полученными с помощью спутниковых определений.

Рассмотрим два варианта вычисления СКП базисов: по формуле Гаусса и по формуле Бесселя.

 Таблица 1

 Определение СКП базисов в режиме RTK по формулам Гаусса и Бесселя

01.09.24 ЖК «Квартал Герцена»							
Направление	Отклон	ение базисов от	СКП (RTK)	СКП (RTK)			
базисов	Цикл 1 (RTK)	Цикл 2 (RTK)	Цикл 3 (RTK)	по ф-ле Бесселя	по ф-ле Гаусса		
T1-T2	0,002	-0,026	0,010	0,019	0,016		
T2-T3	-0,015	-0,001	0,010	0,013	0,010		
T3-T1	-0,030	0,009	0,018	0,026	0,021		
		22.09.24 ЖК «К	вартал Герцена»				
T1-T2	-0,012	-0,033	-0,006	0,014	0,021		
T2-T3	-0,019	-0,024	0,025	0,027	0,023		
T3-T1	-0,007	-0,003	-0,002	0,003	0,005		
		03.11.24 ЖК «К	вартал Герцена»				
T1-T2	-0,003	-0,013	0,005	0,009	0,008		
T2-T3	-0,014	-0,025	-0,006	0,010	0,017		
T3-T1	-0,020	-0,031	0,000	0,016	0,021		
		26.07.25 ЖК «К	вартал Герцена»				
T1-T2	0,011	-0,005	0,010	0,009	0,009		
T2-T3	0,011	0,004	-0,003	0,007	0,007		
T3-T1	0,007	-0,026	0,002	0,012	0,016		
		09.08.25 ЖК «К	вартал Герцена»				
T1-T2	0,025	0,023	0,001	0,013	0,020		
T2-T3	0,018	0,001	-0,003	0,011	0,011		
T3-T1	0,014	-0,001	0,009	0,008	0,010		

Источник: составлено автором на основе полученных данных в ходе исследования.

В первом варианте в качестве известной величины базисов будут использованы данные, полученные с помощью тахеометра. Для данного способа СКП определения базисов будет равна

$$m_k^2 = m_s^2 + (m_\beta^2 \times S^2) \div \rho^2$$
,

где $m_{_{\rm K}} = 2$ мм, где $m_{_{\rm S}} -$ погрешность измерения расстояния =

 $m_{_{\beta}}$ – погрешность измерения угла =1"; S – измеренное расстояние в мм $(\approx 30 \text{ M} = 30000 \text{ MM});$

 ρ – (радиан) =206265" (секунд); так как определение базиса между двумя точками определяется путем определения координат двух точек, то максимальная погрешность измерения т будет равна:

 $m_{_{y}} = \sqrt{2} m_{_{k}}$; $m_{_{y}} = 3$ мм. Следует отметить, что при благоприятных (фактических лабораторных) условиях точность определения базисов, полученных с помощью спутникового оборудования, не менее 10 мм. Точность определения базисов тахеометров – 3 мм. Исходя из вышеизложенного, было принято решение пренебречь погрешностью тахеометра и принять данные базисов, полученных им, за истинные.

Всего было выполнено 5 серий измерений в режиме RTK и 3 серии измерений в режиме VRS. Результаты определения СКП базисов в режиме RTK приведены в табл. 1, результаты определения СКП базисов в режиме VRS - в табл. 2.

Исходя из вышеизложенных таблиц, можно сделать выводы.

- 1. В режиме РТК максимальное СКП по формуле Бесселя – 27 мм и по формуле Γ аусса – 23 мм, минимальное СКП – 3 мм и 5 мм соответственно. В свою очередь, отечественные коллеги проводили похожее исследования, результат определения базисов находился в диапазоне от 4 до 32 мм, что является сопоставимыми величинами с данными, указанными выше [12].
- 2. В режиме VRS максимальное СКП по формуле Бесселя – 11 мм и по формуле Гаусса – 9 мм, минимальное СКП 2 и 4 мм соответственно.

Максимальное СКП в обоих режимах измерений было получено в рамках одной серии наблюдений от 27.05.25.

Также был проведен анализ СКП определения плановых координат в двух режимах измерений. С результатами можно ознакомиться в табл. 3 и 4.

В режиме RTK СКП определения плановых координат находится в диапазоне от 1 до 17 мм, при наличии скачков – до 23 мм.

Следует отметить, что отечественные авторы в своей работе «Применение ГНСС в прикладной геоинформатике» проводили исследования в области определения сходимости плановых координат, полученных с помощью спутникового оборудования. При полевой части исследования использовалась базовая станция, находящаяся на расстоянии приблизительно 2 км, и передвижной приемник, закрепленный на автомобиле, движущемся со скоростью 3-5 км/ч. Результаты отечественных коллег свидетельствуют о сходимости плановых координат с точностью до 10 мм с разовыми скачками до 35 мм [13].

Таблица 2 Определение СКП базисов в режиме VRS по формулам Гаусса и Бесселя

22.09.24 ЖК «Квартал Герцена»								
Направление	Отклон	ение базисов от	эталона	СКП (VRS)	СКП (VRS)			
базисов	Цикл 1 (VRS)	Цикл 2 (VRS)	Цикл 3 (VRS)	по ф-ле Бесселя	по ф-ле Гаусса			
T1-T2	0,000	-0,003	0,006	0,005	0,004			
T2-T3	0,010	0,002	0,012	0,005	0,009			
T3-T1	0,010	0,005	-0,003	0,007	0,007			
	2	26.07.25 ЖК «Кв	артал Герцена»					
T1-T2	0,002	-0,009	0,000	0,006	0,005			
T2-T3	0,007	0,003	0,006	0,002	0,006			
T3-T1	0,004	-0,008	-0,010	0,008	0,008			
	(9.08.25 ЖК «Кв	артал Герцена»					
T1-T2	0,001	-0,005	0,007	0,006	0,005			
T2-T3	0,001	0,007	-0,014	0,011	0,009			
T3-T1	0,011	0,005	-0,007	0,009	0,008			

Источник: составлено автором на основе полученных данных в ходе исследования.

 Таблица 3

 СКП определения плановых координат в режиме RTK по формуле Бесселя

01.09.24 ЖК «Квартал Герцена»		22.09.24 ЖК «Квартал Герцена»	03.11.24 ЖК «Квартал Герцена»	
№ точки	Ось	СКП	СКП	СКП
1	X	0,016	0,001	0,004
1	Y	0,014	0,015	0,017
2	X	0,006	0,023	0,005
2	Y	0,013	0,013	0,011
3	X	0,007	0,011	0,009
3	Y	0,018	0,006	0,019
26.07.25 Ж	К «Квартал Г	ерцена»	09.08.25 ЖК «Квартал Герцена»	
№ точки	СКП	СКП	СКП	
1	0,003	0,006	0,006	
1	0,006	0,006	0,006	
2	0,009	0,006	0,006	
<u> </u>	0,013	0,003	0,003	
3	0,003	0,017	0,017	
	0,004	0,006	0,006	

Источник: составлено автором на основе полученных данных в ходе исследования.

 Таблица 4

 СКП определения плановых координат в режиме VRS по формуле Бесселя

22.09.24 ЖК «Квартал Герцена»		26.07.25 ЖК «Квартал Герцена»	09.08.25 ЖК «Квартал Герцена»	
№ точки	Ось	СКП	СКП	СКП
1	X	0,013	0,006	0,003
1	Y	0,006	0,003	0,006
2	X	0,006	0,009	0,003
2	Y	0,008	0,001	0,003
2	X	0,009	0,011	0,007
3	Y	0,005	0,006	0,005

Источник: составлено автором на основе полученных данных в ходе исследования.

Также в работах «Исследование точности определения координат точек спутниковым приемником в режиме РТК», «Сравнительный анализ точности спутниковых определений в различных режимах измерений» авторы пришли к схожим СКП [14, 15].

Заключение

В таблицах выше приведены СКП базисов и координатных определений отдельно по каждому циклу наблюдений, для более репрезентативного отображения данных

и исключения влияния случайных ошибок ниже рассмотрим СКП которые рассчитаны суммарно с учетом всех серий измерений.

Базовая станция находилась на удалении 4 км от ровера. Априорная СКП в таком случае будет равна 14 мм. Фактическая СКП в режиме RTK составила 11 мм, фактическая СКП с использованием технологии VRS составила 7 мм, то есть результат лучше на 36%. Если из фактической СКП вычесть увеличение погрешности за увеличение расстояния до базовой станции

(1 мм/км = 4 мм), получим такое же СКП, как и с использованием технологии VRS. Исходя из этого, можно сделать вывод о том, что фактическая СКП координат виртуальной базовой станции равняется нулю. Априорная СКП спутникового оборудования в режиме VRS будет подчинена той же формуле, что и при работе в режиме классической RTK.

Общая СКП базисов в режиме RTK по всем циклам наблюдений составила $13\,$ мм, в режиме VRS – $7\,$ мм.

Анализ определения длин базисов не показал существенного отличия от погрешности определения плановых координат, исходя из чего можно сделать вывод о том, что холодная и относительная погрешности являются одинаковыми как для режима измерений RTK, так и для режима измерений RTK с использованием технологии VRS.

Список литературы

- 1. Пархоменко Н.А., Зайшлов К.А. Оценка точности съемки при использовании ГНСС оборудования в режиме RTK // Актуальные проблемы геодезии, землеустройства и кадастра. 2023. С. 51–59. URL: https://www.elibrary.ru/item.asp?id=54915891 (дата обращения: 23.09.2025).
- 2. Фокин Г.А., Мещеряков Д.Е. Обзор возможностей программно-аппаратного комплекса Prince для высокоточного позиционирования методом RTK // Экономика и качество связи. 2025. Т. 3. № 37. С. 77–94. URL: https://cyberleninka.ru/article/n/obzor-vozmozhnostey-programmno-apparatnogo-kompleksa-prince-dlya-vysokotochnogo-pozitsionirovaniya-metodom-rtk (дата обращения: 23.09.2025).
- 3. Липанов И.Д., Хомоненко А.Д., Молодкин И.А. Сравнительный анализ методов точного позиционирования беспилотных летательных аппаратов // Интеллектуальные технологии на транспорте. 2025. № 1 (41). С. 27–36. URL: https://cyberleninka.ru/article/n/sravnitelnyy-analiz-metodov-tochnogo-pozitsionirovaniya-bespilotnyh-letatelnyh-apparatov (дата обращения: 23.09.2025).
- 4. Елагин А.В., Зайцев М.В., Прохоров Д.А., Шендрик Н.К. Оценка точности определения координат спутниковыми приемниками EFT M3 GNSS и EFT M4 GNSS в режиме RTK // Вестник СГУГИТ. 2020. Т. 25. С. 26–33. URL: https://www.elibrary.ru/item.asp?id=43951993 (дата обращения: 23.09.2025). DOI: 10.33764/2411-1759-2020-25-3-26-33.
- 5. Эминов Р.А., Асадов Х.Г. Метод максимально информативной зоны для построения виртуальной базовой станции в кинематических схемах геодезических GPS-сетей // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 2 (84) С. 71–76. URL: https://cyberleninka.ru/article/n/metod-maksimalno-informativnoy-zony-dlya-postroeniya-virtualnoy-bazovoy-stantsii-v-kinematicheskih-shemah-geodezicheskih-gps-setey (дата обращения: 23.09.2025).

- 6. Медянников Д.О., Печников С.Н., Прокофьев А.В., Сергеев Д.В. Исследование точности определения координат пунктов в режиме реального времени (RTK) от одной базовой станции // Труды военно-космической академии имени А.Ф. Можайского. 2025. № 695. С. 146–154. URL: https://www.elibrary.ru/item.asp?id=82333158 (дата обращения: 23.09.2025).
- 7. Бубнова С.А., Кожин П.Ф. Сравнительная оценка точности геодезических данных, полученных современными способами спутниковых координатных определений // Образцовый маршрут: материалы Всероссийской научно-практической конференции. Российский университет транспорта (МИИТ). М., 2024. С. 53–62. URL: https://www.elibrary.ru/item.asp?id=75991776 (дата обращения: 23.09.2025).
- 8. Курасов С.В., Хахулина Н.Б. Зарубежный опыт использования спутниковых систем в кадастре // Научный вестник Воронежского государственного архитектурно-строительного университета. 2015. № 8. С. 54–59. URL: https://disk.yandex.ru/i/IW0tuRijOXJ-xw (дата обращения: 23.09.2025).
- 9. Акифьев И.В., Еремкин А.И., Пономарева И.К. Инновационный метод выполнения геодезических работ в строительстве на принципах навигационной системы ГЛОНАСС // Региональная архитектура и строительство. 2022. № 4 (53). С. 111–119. URL: https://www.elibrary.ru/item.asp?id=49914671 (дата обращения: 23.09.2025). DOI: 10.54734/20722958_2022_4_111.
- 10. Лесюта О.С., Миронов В.А. Применение кинематики реального времени // Молодежный вестник ИРГТУ. 2016. № 2. С. 19–30. URL: https://www.elibrary.ru/item.as-p?id=26159462 (дата обращения: 23.09.2025).
- 11. Шабарова В.А., Вьюшкова Ю.Б. Определение точностных характеристик навигационных приемников в режиме RTK // E-Scio. 2020. № 7 (46). URL: https://cyberleninka.ru/article/n/opredelenie-tochnostnyh-harakteristik-navigatsion-nyh-priyomnikov-v-rezhime-rtk (дата обращения: 23.09.2025).
- 12. Морозов Д.А., Кузнецов Д.А., Леве Д.Е., Перминов А.Ю. Проектирование автоматизированной системы пространственных смещений фазового центра спутниковой геодезической аппаратуры // Наукоемкие технологии в космических исследованиях Земли. 2021. Т. 13. № 5. С. 4—10. URL: https://cyberleninka.ru/article/n/proektirovanie-avtomatizirovannoy-sistemy-prostranstvennyh-smescheniy-fazovogo-tsentra-sputnikovoy-geodezicheskoy-apparatury/viewer (дата обращения: 23.09.2025).
- 13. Купрянов А.О., Цветков В.Я. Применение ГНСС в прикладной геоинформатике // Образовательные ресурсы и технологии. 2016. № 1 (13). URL: https://cyberleninka.ru/article/n/primenenie-gnss-v-prikladnoy-geoinformatike (дата обращения: 23.09.2025).
- 14. Акифьев И.В., Макарова К.М. Исследование точности определения координат точек спутниковым приемником в режиме RTK // Образование и наука в современном мире. 2023. № 5 (48). С. 72–78. URL: https://www.elibrary.ru/item. asp?id=54647778 (дата обращения: 23.09.2025).
- 15. Ванеева М.В., Сорока Ю.С., Жаренков М.Н. Сравнительный анализ точности спутниковых определений в различных режимах измерений // Модели и технологии природообустройства (региональный аспект). 2022. № 1 (14). С. 81–87. URL: https://www.elibrary.ru/item.as-p?id=49174019 (дата обращения: 23.09.2025).

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

УДК 528.48 DOI 10.17513/use.38443

ОЦЕНКА ТОЧНОСТИ ВЫПОЛНЕНИЯ ГЕОДЕЗИЧЕСКИХ РАБОТ ПРИ ЗАКЛАДКЕ КОЛЛЕКЦИИ ВИНОГРАДНИКОВ НА ТЕРРИТОРИИ УЧЕБНО-ОПЫТНОГО ХОЗЯЙСТВА «КУБАНЬ»

Солодунов A.A. ORCID ID 0000-0001-6609-9398, Гурский И.Н. ORCID ID 0009-0008-6956-1881, Пшидаток С.К. ORCID ID 0000-0001-8514-8677

ФГБОУ ВО «Кубанский государственный аграрный университет имени И.Т. Трубилина», Россия, Краснодар, e-mail: 2602555@mail.ru

Целью исследования является проведение комплексной оценки точности геодезических измерений, реализованных посредством комбинированного метода, с последующим детальным экономическим анализом и стоимостью инженерно-геодезических изысканий. Разработка инновационной системы цифрового виноградника является значимым вкладом в развитие современных технологий в агропромышленном комплексе и способствует повышению конкурентоспособности отечественного виноградарства. Создание цифровой карты коллекции винограда является важным этапом в рамках цифровизации аграрного сектора и оптимизации процессов сельскохозяйственного производства. В работе освещены не только количественное и качественное определение погрешностей измерений, но и их статистический анализ для выявления систематических и случайных ошибок. В рамках данной работы реализован гибридный подход, сочетающий инновационные методы геодезического мониторинга и картографирования. Ключевым элементом является использование GPS-оборудования для определения угловых точек кварталов, что обеспечивает высокую точность их географической привязки. Внутренние точки кварталов будут фиксироваться с применением тахеометра и полярного метода, что позволяет осуществить детальное картирование и высокоточное позиционирование в рамках геодезических изысканий. Это позволит осуществлять мониторинг состояния виноградников в режиме реального времения, выявлять потенциальные проблемы на ранних стадиях и принимать превентивные меры для их устранения.

Ключевые слова: цифровизация отрасли виноградарства, геодезические разбивочные работы, инженерногеодезические изыскания, средняя квадратическая погрешность, тахеометр, GPS-технологии

ASSESSMENT OF THE ACCURACY OF GEODETIC WORK DURING THE LAYING OF A COLLECTION OF VINEYARDS ON THE TERRITORY OF THE «KUBAN» EDUCATIONAL AND EXPERIMENTAL FARM

Solodunov A.A. ORCID ID 0000-0001-6609-9398, Gursky I.N. ORCID ID 0009-0008-6956-1881, Pshidatok C.K. ORCID ID 0000-0001-8514-8677

Kuban State Agrarian University named after I.T. Trubilin, Russia, Krasnodar, e-mail: 2602555@mail.ru

The purpose of the study is to conduct a comprehensive assessment of the accuracy of geodetic measurements carried out using a combined method, followed by a detailed economic analysis and the cost of engineering and geodetic surveys. The development of an innovative digital vineyard system is a significant contribution to the development of modern technologies in the agro-industrial complex and contributes to increasing the competitiveness of domestic viticulture. The creation of a digital map of the grape collection is an important step in the digitalization of the agricultural sector and optimization of agricultural production processes. The work covers not only the quantitative and qualitative determination of measurement errors, but also their statistical analysis to identify systematic and random errors. As part of this work, a hybrid approach combining innovative methods of geodetic monitoring and mapping will be implemented. The key element is the use of GPS equipment to determine the corner points of the quarters, which ensures high accuracy of their geographical location. The interior points of the blocks will be recorded using a total station and the polar method, which allows for detailed mapping and high-precision positioning within the framework of geodetic surveys. This will make it possible to monitor the condition of vineyards in real time, identify potential problems at an early stage and take preventive measures to eliminate them.

Keywords: digitalization of the viticulture industry, geodetic alignment works, engineering and geodetic surveys, average square error, tachometer, GPS technology

Введение

Геодезические измерения являются фундаментальной основой для современных геопространственных исследований, обеспечивая высокую степень точности и надежности данных, необходимых для широкого спектра прикладных задач. В современном

мире существует широкий спектр передовых технологий, которые позволяют эффективно создавать топографические планы [1]. Наиболее популярными из них являются тахеометрическая съемка и съемка с использованием глобальных навигационных спутниковых систем.

В 2018 году Кубанский государственный аграрный университет успешно прошел конкурсный отбор и получил грантовую поддержку в рамках федеральной программы «Приоритет 2030». Это событие стало ключевым фактором, обеспечившим значительные академические и инфраструктурные возможности для реализации научных инициатив профессорско-преподавательского состава, сотрудников и студентов университета. Программа «Приоритет 2030» направлена на интеграцию высшего образования и науки, что способствует формированию инновационной экосистемы и повышению конкурентоспособности российской науки и образования на глобальном уровне [2]. Ученые Кубанского государственного аграрного университета приступили к разработке инновационной системы цифрового виноградника, представляющей собой передовой технологический комплекс для управления агроэкологическими процессами в виноградарстве. Начальным этапом проекта является создание цифровой карты коллекции винограда. Данная карта будет служить основой для разработки специализированного программного обеспечения, предназначенного для автоматизации и оптимизации сельскохозяйственных операций [3].

Целью настоящего исследования является оценка точности геодезических измерений, выполненных с использованием комбинированного метода, а также проведение детального экономического анализа стоимости инженерно-геодезических изысканий.

Материалы и методы исследования

Объект исследования находится в Учебно-опытном хозяйстве «Кубань», созданном в 1961 году как структурное подразделение Кубанского сельскохозяйственного института. В рамках программы лидерства «Приоритет 2030» направления «Генетика и селекция в виноградарстве» планируется создание электронных виноградников. Важным этапом для достижения этой цели является обеспечение условий, при которых ряды и клетки будут располагаться на участке по строго заданным координатам. Для этого необходимо отметить колышками на участке, где в 2024 году будет пополняться «Ампелографическая коллекция», 500 точек по координатам. Внедрение цифровых технологий в виноградарство открывает перспективы для повышения качества винограда и винодельческой продукции благодаря оптимизации сроков проведения агротехнических мероприятий.

Результаты исследования и их обсуждение

В состав учхоза входит опытная станция, деятельность которой направлена на совершенствование систем земледелия, разработку адаптивных агротехнологий, проведение многофакторного стационарного полевого опыта по влиянию уровней плодородия, доз удобрений, способов обработки почвы и защиты растений. Схема расположения участка работ представлена на рисунке 1.

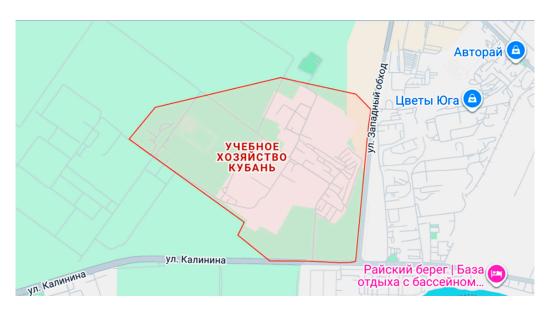


Рис. 1. Схема расположения объекта работ Источник: составлено авторами на основе полученных данных в ходе исследования

Таблица 1

Техническое задание

№	Показатель	Ед. измерения	Значение
1	Общая площадь	га	5,13
2	Количество кварталов	IIIT.	4
3	Размеры кварталов	М	120,00×105,00 100,00×105,00 100,00×105,00 105,00×105,00
4	Ширина дорог между кварталами	M	6,00
5	Ширина внешней дороги	M	7,00
6	Размер клетки	M	4,00×3,00
7	Общее количество выносимых точек (каких?)	шт.	4356
8	Средняя квадратическая погрешность расположения точки (почему?)	М	±0,10

Примечание: составлено авторами по результатам данного исследования.

Таблица 2

Каталог координат пунктов ГГС (в МСК-23)

No	Пункт	Х, м	У, м
1	ПТ Лорис	483688,35	1389744,48
2	ПТ Козет	472916,01	1378441,03
3	ПТ Железный	481924,68	1385932,90
4	ПТ Котляров	482946,41	1360375,22

Примечание: составлено авторами по результатам данного исследования.

В 2024 году кафедра геодезии приняла участие в инженерно-геодезических изысканиях на объекте: «Разбивка клеток виноградников в учхозе «Кубань»», которые были выполнены на основании «Технического задания на выполнение инженерно-геодезических изысканий».

В соответствии с техническим заданием, изложенным в таблице 1, необходимо осуществить комплекс мероприятий, направленных на достижение поставленных целей. Данный подход предполагает выполнение следующих ключевых этапов работы:

- сбор и анализ архивных материалов и исходных данных;
- обследование исходных пунктов геодезической сети на территории, подлежащей топографо-геодезическим изысканиям;
- поиск пунктов будет осуществляться визуально по картматериалам. Результатом работ будет перечень геодезических пунктов, пригодных для производства топографо-геодезических изысканий. Система координат МСК-23 (местная система координат-23, применяемая на территории Краснодарского края):

- создание калибровочного проекта с использованием пунктов Государственной геодезической сети (ГГС);
- геодезические разбивочные работы перенесение на местность проектируемых рядов виноградников.

Топографо-геодезические работы выполнены в соответствии с требованиями СП 47.13330.2016, актуализированная редакция, СП 11-104-97, и произведен сбор и анализ архивных материалов и исходных данных.

На территории, подлежащей топографо-геодезическим изысканиям, в январе 2024 года произведено обследование исходных пунктов Государственной геодезической сети, результатом работ стал перечень геодезических пунктов в системе координат МСК-23 [4] (табл. 2), пригодных для производства топографо-геодезических изысканий на территории объекта (рис. 2).

Исходя из технического задания, представленного кафедрой виноградарства Куб-ГАУ, было принято решение рассмотреть несколько вариантов выполнения работ, с учетом расположения исходных пунктов.

Рис. 2. Схема расположения исходных пунктов Источник: составлено авторами по результатам данного исследования



Рис. 3. Схема калибровки GPS-оборудования Источник: составлено авторами по результатам данного исследования

Все используемые на объекте геодезические приборы прошли метрологическую поверку. Для обеспечения надлежащего качества конечных результатов, а также соблюдения установленных методов и технологии работ в процессе их выполнения регулярно осуществлялся контроль и приемка выполненных инженерно-геодезических работ с их качественной оценкой [5].

В качестве первого варианта выполнения работ будет применяться гибридный

метод. В данном контексте, посредством применения GPS-оборудования, будут определены угловые точки кварталов, что позволит с высокой точностью установить их географическое положение [6]. В свою очередь, внутренние точки кварталов будут определены с использованием тахеометра, применяя полярный метод, который обеспечивает детальное картирование и точное позиционирование в рамках геодезических изысканий.

Нет

 Имя точки
 СКО в плане
 СКО по высоте
 Контроль

 ПТ Котляров
 0,018
 0,027
 Нет

 ПТ Железный
 0,005
 0,007
 Нет

 Таблица 3

 Отчет по результатам уравнивания определяемых пунктов

0,008

Примечание: составлено авторами по результатам данного исследования.

0,012

Для выполнения работ на объекте был использован тахеометр модели Торсоп GM-55. Тахеометр Торсоп GM-55 снабжен мощным дальномером, который позволяет измерить расстояние в безотражательном режиме до 500 метров. Благодаря специальной технологии тахеометр может проводить измерения всего за 0,9 с. Все модели электронных тахеометров Торсоп серии GM-55 имеют максимальный для оптико-электронных приборов уровень защиты от влаги и пыли — IP66 и возможность работы в условиях низких температур до -20.

ПТ Лорис

Альтернативным вариантом будут геодезические разбивочные работы. Перенесение на местность проектируемых рядов виноградников было выполнено комплектом спутникового геодезического оборудования SOUTH в составе ровера «SOUTH S 82Т» № S8294C117128707, свидетельство о поверке С-АЦМ/21-06-2023/255930769 от 21.06.2023 г., и базовой станции «SOUTH S 82Т» № S8294C117128718, свидетельство о поверке С-АЦМ/21-06-2023/255930738 от 21.06.2023 г. Материалы полевых геодезических измерений обработаны с использованием компьютерного программного обеспечения: SouthGNSS-Pro.

Предварительно перед выполнением работ была выполнена калибровка GPS-оборудования. Работы выполняются двумя приемниками. В качестве базовой станции был выбран пункт триангуляции Козет, при помощи второго прибора были определены координаты других трех исходных пунктов триангуляции: Котляров, Железный, Лорис [7]. Схема калибровки представлена на рисунке 3.

Результаты калибровки приведены в таблице 3.

Первоначальным этапом оценки точности спутниковых определений являлось прогнозирование спутникового созвездия. Влияние конфигурации спутникового созвездия на точность работ характеризуется фактором понижения точности PDOP,

представляющим собой отношение средней квадратической погрешности определения местоположения к средней погрешности измерения расстояния до наблюдаемых спутников.

Данные измерения точек с полевого контроллера переносятся в компьютер в виде текстового файла в формате mif/mid, который экспортируется в FreeReason-Light. FreeReason-Light является современным программным продуктом, который позволяет обрабатывать топографические планы и карты, работать с различными графическими картматериалами, а встроенный редактор документов позволяет формировать графические материалы для межевых планов, в том числе схему земельного участка на КПТ. Редактор документов, встроенный в программный продукт FreeReason-Light, используется как при редактировании готовых шаблонов документов, так при создании собственных образцов документов [8].

При создании калибровочного проекта базовая станция располагалась непосредственно на ПТ Козет, ровер устанавливался на пункте триангуляции с использованием трипода. При этом необходимо учитывать ряд важных параметров: электропитание; сбои в приеме спутниковых сигналов; количество наблюдаемых спутников (не менее 4 спутников); значение PDOP (не более 4 единиц); маска отсечения (15°). При ухудшении этих показателей увеличивалось время наблюдений. Данные полевых измерений из спутниковых приемников записывались в персональный компьютер.

Уравнивание результатов измерений выполнено на IBM PC с использованием модуля Carlson SurvCE программного комплекса SOUTH GNSS PRO.

Уравнивание производилось параметрическим способом по критерию минимизации суммы квадратов поправок в измерения. При этом производилась полная оценка точности измерений в сети и положения каждого пункта.

В дальнейшем работы будут проводиться относительно ПТ Козет, средняя квадратическая погрешность точек, выносимых при помощи GPS, будет определяться по формуле:

$$M_{GPS} = 8_{MM} + 1_{ppm}, \tag{1}$$

где показатель ppm зависит от расстояния до базовой станции и составляет +1 мм/1 км.

Расстояние от базовой станции ПТ Козет до объекта работ составляет 17 км, таким образом, необходимо учесть 17 мм в формуле 1, получается, что самая большая погрешность при выноске проектных точек составит:

$$M_{GPS} = 8 + 17 = 25 \text{ MM},$$

что полностью соответствует техническому заданию.

При использовании GPS и тахеометра погрешность размещения точки будет считаться по другой формуле:

$$M_{\text{\tiny TOY}}^2 = M_{\text{\tiny GPS}}^2 + M_{\text{\tiny HOM}}^2,$$
 (2)

где $M_{_{\text{точки}}}$ — средняя квадратическая погрешность выносимой точки;

 ${
m M}_{
m GPS}$ — средняя квадратическая погрешность точек углов кварталов;

 ${\rm M}_{\scriptscriptstyle {
m \Pi}{
m O}{
m I}}$ — средняя квадратическая погрешность выноса точки способом полярных координат.

Как уже было рассчитано ранее, М $_{\rm GPS}$ составляет 30 мм, необходимо более детально рассмотреть ${\rm M}_{\rm пол}$, которое считается по формуле:

$$M_{\text{пол}}^2 = m_s^2 + \frac{m_\beta^2}{\rho^2} \cdot S_{\text{пол}}^2 ,$$
 (3)

где $m_{_{\rm S}}$ — средняя квадратическая погрешность измерения линии полярной засечки;

 m_{β} — средняя квадратическая погрешность измерения угла в полярной засечке;

 $S_{\text{пол}}$ — максимальная длина линии в полярной засечке.

Согласно инструкциям полярную засечку следует выполнять с контролем, схема выполнения работ представлена на рисунке 4.

Согласно формуле 3 видно, что величина угла не влияет на конечный результат и зависит от точности прибора [9]. Выполним расчет ожидаемой погрешности расположения точек, на разном удалении от углов кварталов, которые выносятся с применением GPS [1]. Точки будут выноситься в каждом квартале отдельно, и максимальное расстояние при этом составляет 165,50 метра. Зная эти данные и используя форму (3), можно рассчитать максимальное значение СКП точки:

$$M_{\text{\tiny TOY}} = \sqrt{25^2 + 2^2 + \frac{3^2}{206265^2} \cdot 165,50^2} = \pm 25 \text{ mm}$$

Как показывает расчет, конечное значение погрешности составляет также 12 мм.

Независимо от метода выполнения работ ожидаемая погрешность положения точки не будет превышать требуемого значения [10].

Технический контроль полевых и камеральных работ выполнялся под руководством руководителя путем просмотра полевой документации, сличения разбивочного чертежа с местностью, набора контрольных пикетов по элементам разбивки.

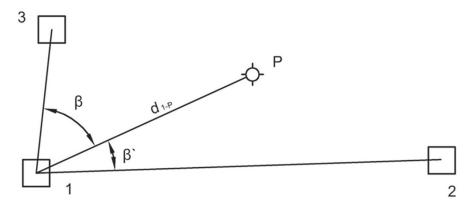


Рис. 4. Схема выполнения полярной засечки Источник: составлено авторами по результатам данного исследования

Таблица 4

Расчет стоимости работ

No	Виды работ	Расчет стоимости	Стоимость, руб.
1	Изготовление и установка ориентирного пункта	260 × 4356 × 5,96	6 750 057
2	Составление технического отчета	25 050 × 5,96 + 101 250	250 548
	Итого		7 000 605
	НДС, 20%		1 400 121
	Всего		8 400 726

Примечание: составлено авторами по результатам данного исследования.

По результатам приемки, выполненные инженерно-геодезические работы удовлетворяют требованиям нормативно-технической документации и техническому заданию заказчика [11].

Для выбора оптимального метода выполнения работ выполним оценку стоимости и затрат времени на полевые изыскания [12]. Для расчета стоимости работ использовался «Справочник базовых цен на инженерные изыскания для строительства», цены приведены в данном справочнике за 01.01.2001. Соответственно, необходимо учесть коэффициент инфляции, установленный в «индексы изменения сметной стоимости строительно-монтажных работ, индексы изменения сметной стоимости проектных и изыскательских работ для строительства», который обновляется каждый квартал [13]. Таким образом, индекс инфляции составляет 6,26.

В контексте проведения геодезических и инженерных изысканий на территории Краснодарского края, где объект расположен в пределах равнинной местности, необходимо учитывать климатические факторы, оказывающие влияние на стоимость выполнения работ. В соответствии с методологическими рекомендациями и нормативными документами климатические условия данной географической зоны классифицируются как относящиеся к первой категории сложности производственных измерений. Следующим шагом было определение видов работ [14]. Так как не требуется закреплять точки на долгосрочной основе, следовательно, применяется следующий пункт «ориентирный пункт – деревянный столб с нижним центром».

По окончании работ заказчику будут переданы все материалы, а также будет подготовлен технический отчет.

В современной геодезии большой акцент делается на современные цифровые технологии сбора и обработки данных, презента-

ционный максимум которых возможен только в цифровом виде [15]. Несмотря на это, аналоговая геодезическая карта и классический способ ее интерпретации по-прежнему являются обязательной частью проектной и другой документации.

Заключение

Оценка точности геодезических измерений, выполненных с использованием комбинированного метода, подтвердила соответствие установленным требованиям.

Следует подчеркнуть, что тахеометр по-прежнему остается востребованным геодезическим инструментом, полностью адаптированным к современным требованиям и условиям эксплуатации. В условиях, когда доступность сигнала глобальных навигационных спутниковых систем ограничена в ряде регионов, применение тахеометров приобретает особую актуальность. Этот инструмент продолжает играть ключевую роль в геодезических и строительных изысканиях, обеспечивая высокую точность измерений и надежность результатов.

Список литературы

- 1. Савченко Ю.М., Турк Г. Современные возможности лазерного сканирования // Московский экономический журнал. 2024. Т. 9. № 6. С. 632-642. DOI: 10.55186/2413046X 2024 9 6 311. EDN: CLRKWF.
- 2. Барсукова Г.Н., Шевкетова И.Е., Пузанова Д.С. Разработка элементов инвестиционного проекта на основе проекта организации и устройства территории сада интенсивного типа // International Agricultural Journal. 2025. Т. 68. № 3. DOI: $10.55186/25880209_2025_9_3_15$. EDN: RKUZNW.
- 3. Artemova E.I., Barsukova G.N. Improving the System of Rational Land Use in Agriculture in the Southern Region of Russia // Innovations in Sustainable Agricultural Systems, Agriculture 4.0 and Precision Agriculture. Vol. 2, Stavropol, 10–11 апреля 2025 года. Vol. 1534. Cham: Springer Nature Switzerland AG, 2025. P. 298-307. DOI: 10.1007/978-3-031-98127-2_30. EDN: KGSEKK.
- 4. Пшидаток С.К., Солодунов А.А., Белоусов И.С. Мониторинг состояния и размещения пунктов государственной геодезической сети на территории Краснодарского края // Московский экономический журнал. 2023. Т. 8. № 6. DOI: 10.55186/2413046X_2023_8_6_307. EDN: MCCLDL.

- 5. Подтелков В.В. Прокопенко А.В., Пшидаток С.К. Оценка видов воздействий складских комплексов на окружающую природную среду // Экономика и предпринимательство. 2018. № 11(100). С. 557-560. EDN: VNHWVE.
- 6. Пшидаток С.К., Турк Г.Г., Сарксян Л.Д., Лукьянова М.С. Инженерно-геодезические изыскания для целей подготовки проектной документации линейного объекта // Научная жизнь. 2022. Т. 17. № 2 (122). С. 206-218. DOI: 10.35679/1991-9476-2022-17-2-206-218. EDN: NXJSBY.
- 7. Солодунов А.А., Смоляков Д.С., Разгоняев С.В., Ерж А.С. Результаты сравнительного анализа орбитальных группировок глобальных навигационных спутниковых систем // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2022. № 183. С. 274-291. DOI: 10.21515/1990-4665-183-027. EDN: DAKAXZ.
- 8. Савченко Ю.М., Турк Г.Г.,. Гурский И.Н Современные возможности использования фотограмметрии // Московский экономический журнал. 2024. Т. 9. № 1. DOI: 10.55186/2413046X 2023 9 1 49. EDN: BFWWII.
- 9. Безуглова Е.В., Маций С.И., Подтелков В.В. Особенности эксплуатации линейных транспортных сооружений в аспекте противооползневой защиты // Геотехника. 2017. № 3. С. 60-66. EDN: ZEOKCT.
- 10. Подтелков В.В., Прокопенко А.В., Зеленков Д.С., Пшидаток М.А. Усиление основания дорожной одежды сельскохозяйственного предприятия для устройства проездов и площадок при наличии локальных песчаных линз // Политематический сетевой электронный научный журнал Ку-

- банского государственного аграрного университета. 2022. № 183. С. 223-233. DOI: 10.21515/1990-4665-183-022. EDN: HFUVWX.
- 11. Шевченко Г.Г., Гура Д.А., Серикова А.А. Применение лазерного сканирования для создания геоинформационных систем // Научные труды КубГТУ. 2016. № 15. С. 57-68. EDN: XRVJEP.
- 12. Гура Д.А., Дубенко Ю.В., Марковский И.Г. Мониторинг объектов транспортной инфраструктуры с применением сканирующих технологий // Технологии техносферной безопасности. 2020. № 2 (88). С. 74-86. DOI: 10.25257/ TTS.2020.2.88.74-86. EDN: CIAPQD.
- 13. Туров Д.И., Гура Д.А., Шевченко Г.Г., Гура Т.А. Комплекс геодезических работ для составления пространственных обмерных чертежей подземных сооружений на примере ГЭС // Научные труды КубГТУ. 2017. № 4. С. 51-59. EDN: ZKAOHX.
- 14. Перов А.Ю., Конограев Е.В., Разумов М.В. Использование ДЗЗ при мониторинге процессов абразионного разрушения Таманского полуострова // Землеустройство, кадастр и мониторинг земель. 2025. Т. 20. № 8 (247). С. 540-548. DOI: 10.33920/sel-04-2508-08. EDN: SNYTSZ.
- 15. Бондарчук А.В., Перов А.Ю. Использование спутниковых данных для мониторинга негативных процессов на землях сельскохозяйственного назначения Краснодарского края // Известия Дагестанского государственного педагогического университета. Естественные и точные науки. 2024. Т. 18. № 4. С. 45-55. DOI: 10.31161/1995-0675-2024-18-4-45-55. EDN: BVZHHV.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

СТАТЬЯ

УДК 630*182(470.23) DOI 10.17513/use.38444

МИКРОЭЛЕМЕНТЫ В ПОЛИСУБСТРАТНЫХ ВИДАХ ЭПИФИТНЫХ ЛИШАЙНИКОВ В СВЯЗИ С ОСОБЕННОСТЯМИ МЕСТООБИТАНИЙ

Катаева М.Н., Беляева А.И.

ФГБУН Ботанический институт имени В.Л. Комарова Российской академии наук, Россия, Санкт-Петербург, e-mail: mkmarikat@gmail.com

Цель исследования — определить содержание микроэлементов в лишайниках *Usnea hirta*, *Hypogymnia physodes* и *Bryoria fuscescens* в зависимости от экологических условий местообитаний и выявить особенности на иве. Концентрации определены методом атомно-абсорбционной спектрометрии. Определено содержание микроэлементов в лишайнике *H. physodes* на стволах и ветвях ивы козьей, на ветвях в кронах сосны и на березе. Выявлено влияние биологических особенностей ивы козьей на лишайник. В талломах лишайника *H. physodes* на иве концентрации Cd в 3,7 раза выше, чем в лишайнике на ветвях сосны. Цинк в лишайнике на иве в 1,5 раза выше, чем на сосне. Определены размер и масса хвои текущего года в кронах сосны на кустарничково-сфагновом болоте. Проведено сравнение длины и массы талломов лишайника *Usnea hirta* в кронах живых сосен и на сухостое стволов сосны на болоте, влажности. Концентрации Cd в видах лишайников кустистой и листоватой жизненных форм различаются в 1,24—2,53 раза. Сделаны оценки концентраций Cd в листьях и почках ивы козьей и в хвое сосны в качестве кормов лесных боровых птиц. В укороченных побегах березы из северной Карелии, листьях осины средней тайги содержатся довольно высокие концентрации Cd. Концентрации микроэлементов в лишайниках на сосне и в хвое сосны соответствуют фоновым значениям.

Ключевые слова: Ленинградская область, микроэлементы, Hypogymnia physodes, Usnea hirta, Salix caprea

MICROELEMENTS IN POLYSUBSTRATE EPIPHYTIC LICHENS IN CONNECTION TO FEATURES OF HABITATS

Kataeva M.N., Belyaeva A.I.

Komarov Botanical Institute of the Russian Academy of Sciences, Russia, Saint Petersburg, e-mail: mkmarikat@gmail.com

The aim of this study is to determine the content of microelements in epiphytic lichens *Usnea hirta*, *Hypogymnia physodes* and *Bryoria fuscescens* in relation to ecological conditions of habitats and to reveal features on willow. Concentrations were determined by atomic absorption spectrometry. Accumulation of microelements in lichen *H. physodes* growing on trunks and branches of willow *Salix caprea*, on branches of pine crowns and on birch trunks was determined. The influence of biological features of willow on lichen *H.physodes* was revealed. Lichen thalli on willow contain higher concentration of Cd, 3,7 fold higher above the content in pine branches. Zinc in lichen on willow is 1,5 times higher as compared to pine. Size and mass of pine needles of current year in pine crowns of dwarf shrub sphagnum mire were determined. Length and mass of *U. hirta* thalli, water content are compared in pine crowns and on dead standing wood of pine trunks. The difference of Cd accumulation between lichens of two life forms is 1,24–2,53 times. Assessments of Cd concentrations in leaves and buds of willow and needles and buds of pine as feed resources of wild living pine forest birds were made. Relatively high concentrations of Cd in short shoots of birch in the northern Karelia and aspen leaves of middle taiga subzone were determined. Concentrations of microelements in lichens on pine, in pine needles are corresponding to the background values.

Keywords: Leningrad region, microelements, Hypogymnia physodes, Usnea hirta, Salix caprea

Введение

Биоаккумуляция тяжелых металлов может создавать патологии в популяциях и нарушать их устойчивое состояние. Слабо изученной остается биоаккумуляция кадмия (Cd) при его высокой токсичности, необходим мониторинг качества окружающей среды и растений — кормовых ресурсов для видов местной фауны, оценка регионального

фонового содержания металлов, сопоставление данных. Лишайники как индикаторы состояния воздушной среды дают оценку атмосферного загрязнения. Не изучено соответствие концентраций в лишайниках и хвое, в субстратах, влияние форофитов, экологических условий.

Необходимо охарактеризовать базовый уровень концентраций Cd и других микроэ-

лементов в полисубстратных видах лишайников в сообществах без влияния пирогенных и техногенных нарушений, выявить меру их отличия в зависимости от состояния крон и характеристик субстратов. Виды *Нуродумпіа physodes* и *Usnea hirta* (L.) Weber ex F.H. Wigg относят к относительно устойчивым к действию атмосферного загрязнения. Кустистый лишайник *U. hirta* в средней тайге часто встречается на сосне [1, с. 48], *Bryoria fuscescens* (Gyeln.) Brodo et D. Hawksw. более чувствительный, эти лишайники встречаются на разных форофитах в естественно сформировавшихся сообществах.

Цель исследования — определить концентрации микроэлементов в видах лишайников *Hypogymnia physodes*, *Usnea hirta*, *Bryoria fuscescens* в зависимости от экологических условий местообитаний и выявить особенности на иве.

Материалы и методы исследования

Ива козья распространена по краям дорог, полей, в подлеске сосняков. Эпифитные лишайники Hypogymnia physodes (L.) Nyl., Usnea hirta (L.) Weber ex F.H. Wigg, Bryoria fuscescens (Gyeln.) Brodo et D. Hawksw. были собраны на древесном субстрате в сосновом сообществе и на кустарничково-сфагновом болоте в августе 2024 г., на стволах и ветвях ивы козьей с коркой – в 2019 и 2024 гг. Образцы собраны на болоте на древесине сухостоя сосны, корке стволов и ветвей, на корке ствола березы. Повторность сбора образцов лишайника на иве козьей -5, высота 1,30–1,50 м. Район – подзона средней тайги, Ленинградская область, Волховский и Лодейнопольский районы [2], вне зон влияния локальных источников атмосферного загрязнения.

Образцы лишайников высушены в термостате до абсолютно сухого веса. Пробы лишайников, корки, хвои озоляли при 450 °С в муфеле, золу растворяли при нагревании в 2N HCl, фильтровали через фильтр средней плотности «синяя лента» [2].

Концентрации микроэлементов определяли на ААС Квант-АФА (Россия). Анализ проведен в двух аналитических повторностях, с использованием государственных стандартных образцов (ГСО). Данные обрабатывали в Microsoft Excel 2010 [2].

Определяли размерные и массовые показатели хвои на ветвях в кронах сосны в сосняке кустарничково-зеленомошном и на кустарничково-сфагновом болоте. Образцы собирали в конце сезона вегетации 2024 г. На сосне (3 экз., 3,5 м высотой) срезали 3–5 ветвей. В лаборатории с них отделяли и хвою текущего года, почки. Со ствола сосны на высоте 1,3–1,5 м собирали тонкие пластины внешнего слоя корки, 1–2 мм.

Массу хвои сосны текущего года, 100—120 пар хвои на одной ветви, определяли на аналитических весах, измеряли длину. Ширину хвои принимали 2 мм. В сосняке изучено 110 пар хвои на ветвях в нижней части кроны. Масса сухой хвои всей кроны сосны на болоте 1050 г. Почки сосны и ивы козьей измеряли, взвешивали. Анализировали виды сем. Salicaceae, листья и ветви ивы Salix caprea L. 1—2 лет, почки, листья осины Populus tremula L. без черешков. Сравнивали концентрации в листьях, тонких ветвях берез, укороченных побегах березы северной Карелии, собранных в 2022 г.

Для выявления размеров лишайника в зависимости от жизненного состояния форофита, в живых кронах сосны и на сухостое стволов кустарничково-сфагнового болота сопоставляли длину и массу талломов *U. hirta*. Образцы собраны в августе 2025 г. на сухостое стволов сосны — 104 таллома (3 экз.), в живых кронах — 30 (2 экз.), на коре ствола в сосняке — 12 (3). После сбора в герметичные пакеты талломы измерены и взвешены. Массу талломов, корки, древесины сосны и березы определяли при естественной влажности образцов и воздушно-сухой.

Результаты исследования и их обсуждение

Лесные сообщества образованы не только древесными породами, но и ассоциированными с ними организмами [3]. Вид-эдификатор древесного яруса и его биогеоценотические связи играют важную роль в создании биоразнообразия в биогеоценозах [4; 5]. Растения, как продуценты органического вещества, взаимодействуют с окружающей средой. Химические элементы, поступающие из атмосферных выпадений, участвуют в питательном режиме лесов. Известно, что атмосферное поступление элементов является преобладающим источником питания для лишайников. Древесные растения преобразуют атмосферные выпадения. На разных видах форофитах различаются потоки химических элементов, субстрат лишайников. Листопадные деревья способны к потере большего количества макро- и микроэлементов, вымываемых из листьев. По приуроченности к форофитам более разнообразный видовой состав лишайников регистрируется на иве и осине [4; 5].

Таблица 1 Микроэлементы в *Hypogymnia physodes* на иве и других форофитах, мг/кг, абс. сух. масса

Форофит	Ni	Cu	Cd	Pb	Fe	Mn	Zn			
	Край поля									
Ствол ивы	Ствол ивы 2,0±0,6 3,4±0,4 1,80±0,30 5,8±0,9 278±38 29±1									
Ветви ивы	1,6±0,1	3,2±0,03	$0,88\pm0,05$	7,4±0,4	356±20	28±1	70±1			
		Зара	астающее по	ле, окраина						
Ветви осины	1,4±0,2	2,9±0,05	$0,93\pm0,05$	$7,1\pm0,9$	258±43	45±2	55±1			
Ветви ели	1,9±0,2	3,3±0,03	$0,56\pm0,02$	$8,3\pm0,5$	243±52	85±7	56±3			
		Кустар	ничково-сфа	агновое боло	ото					
Ветви сосны	2,5±0,3	4,3±0,9	$0,36\pm0,13$	$5,3\pm2,0$	357±120	58±12	55±11			
Ствол березы	1,3±0,1	3,7±0,2	0,50±0,17	$6,1\pm0,8$	489±60	365±98	123±32			
	Сосновый лес, верхняя часть крон									
Ветви сосны	1,7±0,3	4,5±0,1	0,38±0,01	$3,9\pm0,03$	360±135	150±14	54±3			
Ствол березы	2,6±0,1	3,9±0,1	0,81±0,03	8,3±1,0	313±2	420±16	165±2			

Источник: составлено авторами на основе полученных данных в ходе исследования.

Таблица 2 Содержание металлов в корке, почках, хвое сосны, листьях ивы, мг/кг, абс. сух. масса

Материал	Ni	Cu	Cd	Pb	Fe	Mn	Zn
			Coc	новый лес			
Почки ивы козьей	16,4±0,0	9,0±0,1	0,76±0,01	<	24±1	203±2	83±0,5
Листья ивы козьей	11,0±0,5	4,5±0,3	1,20±0,0	0,92±0,1	99±0,5	850±7	288±5
Хвоя сосны, лес, 2024 г.	2,7±0,4	3,4±0,4	0,065±0,01	$0,47\pm0,05$	18±1,3	277±33	29±0,4
Хвоя сосны, лес, 1 год	1,0±0,1	2,8±0,1	0,098±0,01	<	45±1	692±4	44±3
			Местообита	ния без пол	ога леса		
Листья ивы козьей, берег	$0,77\pm0,2$	3,3±0,2	0,51±0,01	1,15±0,2	208±1	697±10	503±45
Ветви ивы козьей, поле 1–2 года	1,11±0,3	3,0±0,2	1,04±0,0	1,53±0,1	19±0,5	20±1	65±1
		I	Кустарничков	во-сфагновс	е болото		
Почки сосны	1,8±0,6	2,1±0,2	0,070±0,02	0,82±0,4	25±1	94±17	22±2
Хвоя сосны 2024 г.	$0,36\pm0,2$	1,2±0,1	0,062±0,03	0,39±0,02	33±1	457±7	48±0,2
Корка ствола сосны	$0,54\pm0,2$	1,9±0,9	$0,50\pm0,07$	1,90±0,8	82±34	59±21	27±11

Источник: составлено авторами на основе полученных данных в ходе исследования.

На стволах и ветвях ивы козьей Сd в лишайнике выше, 1,80 и 0,88 мг/кг, относительно сосны и других форофитов. Лишайник на стволах ивы выделяется более высокой концентрацией Сd. Талломы лишайника в кроне березы содержат больше Zn, до 2,2— 3,0 раза выше, также Mn, которого накапливают в 2,8—6,3 раз больше. В верхней части кроны березы Mn в талломе выше концентрации Fe, в 1,34 раза.

В лишайнике на иве козьей средняя концентрация Сd, 1,34 мг/кг, выше в

3,7 раза по сравнению с сосной. В лишайнике на стволе ивы козьей выявлена высокая концентрация Zn, 95 мг/кг. Крона осины также способствует накоплению Cd в талломах лишайника, концентрации Cd выше в 2,6 раза, до 0,93 мг/кг (табл. 1).

В местообитания лишайников микроэлементы могут поступать со стволовыми водами, при вымывании из листьев кроны вида форофита. Для отдельных таксономических групп растений известна наследственно обусловленная способность к избирательному

накоплению микроэлементов. Представители семейства Salicaceae, виды рода Salix способны избирательно накапливать Cd и Zn в листьях, также в почках и ветвях при отсутствии техногенного загрязнения [6]. Результаты показали, что в лишайнике, растущем на иве козьей, содержание Cd выше по сравнению с другими форофитами. Это соответствует более высокому содержанию Cd в листьях, ветвях ивы и, очевидно, связано с вымыванием подвижных форм. Концентрация Cd в листьях ивы козьей в разных местообитаниях -0.51-1.2 мг/кг, в ветвях -1,04 мг/кг. Почки ивы козьей накапливают Cd до 0,76 мг/кг. В вегетативных почках сосны, как и в хвое, концентрации Сd меньше, чем в почках и листьях ивы, соответственно в 10,9–19,3 раз.

Концентрации тяжелых металлов в хвое сосны являются фоновыми. В хвое сосны на болоте, как и в сосняке кустарничково-зеленомошном, определены низкие концентрации Pb-0,39-0,47~мг/кг, Cd-0,062-0,065~мг/кг, в вегетативных почках сосны Cd-0,070~мг/кг. Ива выделяется довольно высокой концентрацией Mn-203-850~мг/кг, также Zn в почках -83~мг/кг, в листьях -288-503~мг/кг (табл. 2).

В разных местообитаниях концентрация Zn в листьях ивы в 6,0–11,4 раз выше, чем в хвое сосны, в почках ивы и сосны – в 3,8 раза. Все части растений содержат низкие концентрации Pb, в корке сосны Pb выше, 1,9 мг/кг. В листьях ивы козьей, в почках, более интенсивно накапливается Ni, 11–16 мг/кг.

Концентрации в хвое сопоставимы с содержаниями в хвое сосны в не нарушенном

загрязнением национальном парке «Бурабай» в Казахстане (Боровое) [7].

Длина, масса хвои сосны, прирост ветвей в длину различаются больше. В неблагоприятных условиях роста на холодном обводненном торфе сфагнового болота годовой прирост ветвей сосны слабый, в среднем 1,53 см. Прирост ветвей на болоте ниже, чем в сосняке, до 25%, длина и масса хвои меньше, 72,4 и 74,8% от данных сосняка. Площадь кроны низкорослой сосны на болоте небольшая, менее 8 м^2 (7,86 м²) при массе всей хвои в кроне 1050 г. При этом расчете учитывали размер хвои текущего года. Средняя площадь 1 кг хвои сосны на болоте близкая к поверхности кроны, составила 7,49 м², что представлено в таблице 3.

Крона сосны на болоте может задерживать больше зимних осадков в виде снега. В условиях болот накопление тяжелых металлов в талломах лишайников может более определенно характеризовать условия атмосферного загрязнения, поскольку при небольших размерах влияние крон сосны слабое. Условия на сухостойных соснах отличаются поступлением осадков и микроклиматом.

Кустистые лишайники на сухой сосне содержат несколько больше Cd, Pb. У двух видов лишайников с кустистым талломом на древесине сухой сосны концентрации Cd различаются в 1,45 раз. Более высокий Cd из них накапливается в *U. hirta*, до 0,29 мг/кг. Различия содержания Cd на сосне у этого вида и *H. physodes* небольшие (табл. 1), всего в 1,24 раза, 0,29 и 0,36 мг/кг (табл. 4).

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin$

Показатель	Сосна, куста	Сосняк		
Показатель	1	2	3	Сосняк
Средняя масса хвои, 10 шт., $N_{1-3} = 300, 120, 100$	0,110±0,014	$0,079\pm0,08$	0,058±0,010	0,109±0,03
Длина хвои, см	3,77±0,197	3,05±0,17	2,30±0,302	4,20±0,63
Прирост, см	1,95±0,21	1,54±0,35	1,10±0,28	2,03±0,64
Масса прироста, г	$0,036\pm0,01$	$0,031\pm0,01$	$0,016\pm0,00$	0,037±0,22
Масса почки, 1 шт., г	$0,013\pm0,01$	$0,019\pm0,01$	$0,022\pm0,0$	0,012±0,01
Хвоя 1 шт., г	0,011	0,008	0,006	0,0109
Площадь 1 хвои, см ²	0,75	0,61	0,46	0,84
Площадь 1 кг хвои, м ²	6,82	7,72	7,93	7,71

Источник: составлено авторами на основе полученных данных в ходе исследования.

 Таблица 4

 Концентрации элементов в лишайниках на сосне и березе болота, мг/кг, абс. сух. масса

Местообитание	Ni	Cu	Cd	Pb	Fe	Mn	Zn	
			Usi	nea hirta				
Ствол сухой сосны, 1,8–3,0 м	0,70±0,4	2,50±0,5	0,29±0,07	3,2±0,9	262±25	61±15	14±5	
Ствол живой березы 1,3–1,5 м	0,81±0,1	1,79±0,3	0,18±0,01	2,8±0,2	314±5	255±2	33±1	
		Bryoria fuscescens						
Ствол сухой сосны 1,3–1,5 м	0,10±0,06	2,65±0,2	0,20±0,01	2,7±0,5	210±59	87±18	31±4	
Колода березы 1,1 м–1,5 м	<	1,80±0,3	0,15±0,01	0,93±0,3	124±2	72±1	42±1	

Источник: составлено авторами на основе полученных данных в ходе исследования.

 Таблица 5

 Размеры и масса талломов *Usnea hirta* на сухостое сосны, в кронах сосны и в сосняке

Условия роста	Показатель	Среднее, М	CV,%	Минимум	Максимум
Сосна сухая,	длина, см	3,21±0,83*	25,8	1,50	6,20
ствол, без корки (104)	масса сырая, г	$0,091\pm0,07$	73,6	0,01	0,32
(104)	масса сухая, г	$0,080\pm0,05$	61,1	0,01	0,22
Сосна живая,	длина, см	4,73±1,2*	24,9	3,00	8,50
крона и ствол (32)	масса сырая, г	$0,118\pm0,10$	84,2	0,03	0,41
(32)	масса сухая, г	$0,085\pm0,66$	78,2	0,03	0,28
Сосна живая,	длина, см	4,68±1,16*	24,8	3,10	7,00
на коре ствола (12)	масса сырая, г	0,130±0,10	80,4	0,03	0,35
(12)	масса сухая, г	$0,081\pm0,06$	75,6	0,03	0,22

Примечание. *Различия по тесту Манна – Уитни, р < 0,01.

Источник: составлено авторами на основе полученных данных в ходе исследования.

По-видимому, на концентрации Cd в лишайниках на сухостое сосны влияет поступление снеговых осадков при отсутствии кроны, состояние талломов. На стволе березы в лишайниках содержится больше Zn, в 1,35–2,36 раз, чем они накапливают на древесине сухой сосны. Под влиянием кроны березы в талломах кустистого вида *B.* fuscescens в 3 раза выше концентрация Mn, до 255 мг/кг.

Размеры талломов лишайников на сосне в зависимости от жизненного состояния ранее не были изучены. На примере вида U. hirta оценивали длину таллома на разных субстратах на сосне. Влажность и состояние крон формируют условия жизни в местообитаниях лишайников, крона и ее микроклимат способствуют росту талломов. Длина талломов лишайника U. hirta в кронах жи-

вой сосны (4,73 см), под кронами на корке ствола в сосняке больше (4,68 см), по сравнению с длиной на древесине сухостоя сосны на болоте, (3,21 см). В кронах сосны дольше сохраняется влажность, более длительная физиологическая активность и рост лишайников, по сравнению с древесиной сухостоя. Влажность талломов лишайника в живой кроне сосны на болоте, на стволах сосны в сосняке выше, по отношению к сухостою, их масса 0,118 и 0,130 г (табл. 5).

С длиной талломов U. hirta тесно связана их масса при естественной влажности. Коэффициент корреляции r = +0,66 для живой кроны сосны, на сухостое r = +0,71 и на коре ствола в сосняке r = +0,69. Коэффициент вариации длины менее 30%. Средняя сухая масса таллома 0,080-0,085 г, больше в кроне сосны.

Таблица 6Влажность древесины сухостоя стволов сосны, корки сосны, сухостоя березы

Субстрат, повторность, диаметр стволов, 1,3 м и основание	Влажность, воздсухой массы	Потеря воды, сырой массы	Размер фрагмента, см		
			длина	ширина	толщина
	%		длина	ширина	Толщина
Древесина сухой сосны n = 12, 14/17 см	32,3±10	23,7±6,5	9,96±0,7	1,7±0,7	0,89±0,08
Корка ствола живой сосны, $n = 8, 9/12$ см	19,0±6,1	15,9±4,3	5,64±0,2	2,7±0,9	0,13±0,02
Древесина сухой березы n = 10, 7/8 см	199±56	65,2±8,0	6,17±0,9	2,9±0,4	1,42±0,43
Корка сухой березы, n = 5, 7/8 см	10,9±6,4	9,66±4,9	6,3±0,8	4,3±0,4	0,11±0,03
Корка ствола сосны, сосняк, $n=6,32/40$ см	12,9±2,8	11,4±2,2	5,2±1,8	4,0±1,7	0,15±0,05

Источник: составлено авторами на основе полученных данных в ходе исследования.

Накопление воды в древесине сухостоя стволов сосны влияет на условия роста лишайников. Древесина сухостоя сосны на болоте более влажная, 32,3%, по сравнению с коркой ствола в кроне сосны (табл. 6).

У корки ствола сосны на болоте в слое 1,3–1,5 мм влажность несколько больше, до 19,0%, чем корки сосны в сосняке, 12,9%. Корка березы постоянно подпитывается водой из древесины, слоя воды, мхов болота, что создает благоприятные по влажности местообитания для лишайников на рыхлой древесине сухостоя березы (табл. 6).

Старовозрастные леса необходимы для видов лишайников со специфическими требованиями [8; 9]. Для сукцессионных стадий характерным является комплекс эпифитных и эпиксильных видов [10]. Отмершая древесина разной степени разрушения необходима в качестве субстрата для эпиксильных видов лишайников. Экологический и таксономический анализ флоры лишайников показал, что во всей флоре доля облигатно связанных с древесиной эпиксильных видов 10%, сем. Parmeliaceae достигает 19% [11].

Концентрация Сd в лишайниках, растущих на древесине, потенциально может превышать содержание в лишайниках, растущих в кронах форофитов. Однако в фоновых условиях виды — концентраторы Сd Salix caprea, Populus tremula выделяются более высоким содержанием. В фоновых условиях содержание Сd в лишайнике превосходит или сопоставимо с листьями видов форофитов — ивы козьей и осины (при соотношении 1,5 раза на иве, 0,78 на осине). Влияние вида — концентратора Сd на лишайник сильнее, по сравнению с различиями

концентраций Cd в видах лишайников двух жизненных форм. Лишайник *H. physodes* в условиях фона характеризуется более высокой способностью к биоаккумуляции тяжелых металлов, больше подходит для экологического мониторинга. Содержание Cd в его талломе 0,36 мг/кг, выше в 5,8 раза по отношению к хвое сосны.

Определяли состав листьев и хвои форофитов, почек и оценивали их в качестве кормовых ресурсов. Тяжелые металлы способны накапливаться в пищевых цепях при поступлении с кормом в организмах диких животных и птиц. Почки ивы, березы, побеги, хвоя сосны, можжевельника, шишкоягоды представляют важную часть корма птиц, куропаток, глухарей и тетеревов. Продуценты, растения, создающие фитомассу, и консументы – потребители находятся на разных уровнях пищевой цепи. Консументы фитофаги – куропатки, их корм зимой – побеги и почки ивы, тетерева, глухари, северные олени, питающиеся лишайниками. Вторичные леса, болота, зарастающие луга, вырубки, где есть веточный корм, побеги осины, ивы, березы – это подходящие биотопы для лося. Северо-Запад и Карелия – это территории с высоким разнообразием копытных животных [12; 13]. Избыток микроэлементов в кормах влияет на микроэлементный состав продукции дичи. Хвоя и почки сосны на болотах хорошо заметны для глухарей, это одна из основных частей корма. Куропатки зимой питаются хрупкими ветвями ивы и почками, отламывают клювом. Расчет массы и количества почек сосны нужен при оценках потребляемого корма в рационе птиц. Среднее количество почек на сосне в кустарничково-сфагновом болоте в 1 г составляет, на сухую массу, от 45(53) - 77 шт., в сосняке -83 шт., почки ивы козьей -58 шт. на 1 г средняя масса 0,017 г, размер 7x3 мм.

В ненарушенном загрязнением районе для разных видов форофитов лишайников выявлены концентрации Cd в листьях, побегах, древесине. Избирательно накапливающие Cd S. caprea и P. tremula различаются по степени его аккумуляции. По сравнению с содержанием Cd в ветвях и листьях березы, накопление Cd выше в листьях осины и корке ивы, 0.73-1.07 мг/кг соответственно. Разные части растений также в неодинаковой степени накапливают Cd. Укороченные побеги березы северной Карелии и в Приладожье содержат более высокие концентрации Cd, 0.17-0.61 мг/кг, относительно ветвей березы. Самая низкая концентрация Cd среди субстратов определена в древесине сухих ветвей ели, 0,072 мг/кг, что сопоставимо с содержанием Cd в хвое.

В фоновых условиях горной тундры Полярного Урала кустарниковая ива арктическая *Salix arctica* лидирует среди кормовых растений, Cd в листьях 1,83 мг/кг.

Эпифитные лишайники превосходят по накоплению Cd напочвенный кормовой вид лишайника *Cetraria islandica*. На сосне

в них выявлена более высокая концентрация Cd. Кадмий в лишайнике *U. hirta* на сосне и березе выше, чем в *C. islandica* в 4,6–7,4 раз, также в *B. fuscescens* – в 3,8–5,1 раз. Талломы *C. islandica* содержат довольно низкую концентрацию Cd, всего 0,039 мг/кг (табл. 7).

Ранг различий этих эколого-субстратных групп лишайников характерен для естественного состояния лесных сообществ в отсутствие загрязнения. Следует отметить, что в листьях ивы козьей Cd концентрируется при отсутствии полиметаллических аномалий в почвах. При рудном обогащении почв геохимических аномалий накопление Cd в видах-концентраторах еще больше возрастает.

На территории Карелии имеются оценки массы растений в корме белой куропатки 26,5 г [14]. Химический анализ корма из растений зоба белохвостой куропатки *Lagopus leucurus* в Скалистых горах Колорадо выявил высокий уровень Cd, 2,63 мг/кг сух. массы, близкий к Cd в листьях и ветвях ивы [15]. В обогащенных рудных районах обитания предел токсичности в почках куропатки достигается за 600 дней. При питании ивой куропатки концентрируют Cd во внутренних органах больше, чем в мышцах [15; 16].

Таблица 7 Микроэлементы в ветвях, побегах, корке, напочвенном лишайнике, листьях, мг/кг, абс. сух. масса

Часть растения, диаметр	Ni	Cu	Cd	Pb				
Болото								
Ветви березы, 1–2 мм, возраст 1 год	$0,31\pm0,01$	$3,37\pm0,1$	0,280±0,01	0,99±0,1				
Листья березы пушистой, та же	0,43 ±0,04	2,00±0,01	0,218±0,01	0,42±0,1				
Сухие ветви ели, 5 мм, ствол 3,7 см	0,20±0,05	1,09±0,1	0,072±0,01	5,75±0,1				
Сосновый лес								
Побеги березы, укороченные	2,05±0,1	4,2±0,1	0,61±0,01	4,06±0,3				
Листья березы повислой	5,10±0,2	2,9±0,1	0,250±0,01	$0,98\pm0,02$				
Cetraria islandica, верхняя часть 3,0-3,5 см	$0,40\pm0,05$	1,0±0,05	$0,039\pm0,00$	0,80±0,4				
Северная Карелия, сосновый лес								
Ветви березы повислой, 1–2 мм	2,99±0,1	3,33±0,2	0,111±0,01	0,73±0,01				
Побеги березы, укороченные	2,41±0,1	4,97±0,1	0,173±0,01	2,66±0,1				
Приладожье, поле								
Листья осины, без черешков	1,32±0,1	4,7±0,2	0,730±0,02	0,95±0,1				
Корка ствола ивы козьей	1,30±0,1	2,87±0,1	1,07±0,01	0,94±0,2				
Полярный Урал, горная тундра								
Листья Salix arctica	18±0,5	5,67±0,2	1,83±0,1	1,39±0,1				
Ветви S. arctica	5,1±0,2	9,1±0,1	1,72±0,1	0,12±0,0				

Источник: составлено авторами на основе полученных данных в ходе исследования.

Осина обладает способностью к накоплению Cd. Листья осины концентрируют Cd в фоновых условиях, 0,73 мг/кг, что согласуется с результатами [17]. Эта концентрация не превышает предельно допустимую концентрацию Cd (ПДК), 1 мг/кг [17]. Для листьев ивы и корки Cd выше, 1,20 мг/кг, в ветвях 1,04 мг/кг, в корке 1,07 мг/кг. В фоновых условиях сообществ все части ивы содержат более высокие концентрации Cd, по сравнению с сосной. Избирательная концентрация Сф в частях ивы козьей, в листьях, в корке, приводит к более высокой биоаккумуляции Cd в лишайнике, и она не связана с атмосферным загрязнением. Высокое видовое разнообразие лишайников приводится для ивы [4]. Оно совпадает с избирательной аккумуляцией микроэлементов в листьях ивы (Cd, Zn). Содержание макроэлементов (Ca, K, Mg, N, P) в листьях ивы, вымывание необходимых макро- и микроэлементов из листьев кроны, очевидно, положительно влияют на лишайники, обусловливают разнообразие видов. Концентрации Cd в талломах лишайника на иве козьей, по-видимому, для него не токсичные.

В талломах эпифитных лишайников определены фоновые концентрации тяжелых металлов. При биомониторинге нужно принимать во внимание, что накопление Сd, приоритетного металла-загрязнителя в регионе в лишайниках на иве, сосне, березе, осине имеет отличия. Следует исключать форофиты иву и осину при определении фона из-за биогеохимической специализации. В хвое сосны не выявлено загрязнения тяжелыми металлами, как кормовой ресурс хвоя сосны соответствует экологическим нормам.

Заключение

Выявлена видовая специфичность Salix caprea L., Populus tremula L. в накоплении Cd в условиях северо-западного региона. В лишайнике Hypogymnia physodes (L.) Nyl. растущем на иве козьей, избирательно накапливающей Cd, концентрации Cd выше в 3,7 раза по сравнению с сосной. Меньшие различия по степени накопления Cd получены на сосне у лишайников кустистой U. hirta (L.) Weber ex F.H. Wigg и листоватой жизненной формы H. physodes — в 1,24—1,80 раза; B. fuscescens и H. physodes в 2,11—2,53 раза. При биомониторинге следует учитывать видовую специфичность.

Длина талломов кустистого лишайника *U. hirta* различается в местообитаниях на со-

сне. На сухостое сосны без кроны талломы имеют меньший размер 3,21 см, по сравнению с условиями под кронами, эти отличия достоверны. На древесине сухостоя сосны довольно благоприятные условия влажности субстрата местообитаний (32,3%) при отсутствии кроны. Длина талломов в кронах сосны на болоте и под пологом леса больше в 1,47 и 1,46 раз, масса в 1,29 и 1,42 раза соответственно, чем на сухостое. Размеры U. hirta связаны с их массой, коэффициент корреляции r = +0,66 для крон сосны на болоте, на сухостое r = +0,71.

Крона сосны на болоте имеет небольшую площадь, менее 8 м². В отличающихся экологических условиях сделаны сравнения размера и массы хвои сосны, прироста ветвей, массы почек. Определено содержание микроэлементов в почках и хвое сосны для оценки кормовых ресурсов птиц. В фоновых условиях в почках ивы козьей в 10,9 раз выше концентрации Cd, чем в почках сосны, в листьях ивы Cd выше, чем в хвое сосны, в 19,3 раза. В корме птиц фитофагов из листьев, ветвей, почек ивы более высокий Cd.

Список литературы

- 1. Биопродукционный процесс в лесных экосистемах Севера. СПб.: Наука, 2001. 278 с. EDN: RRDFGB. ISBN 5-02-026154-8.
- 2. Катаева М.Н., Беляева А.И. Действие кроны березы на содержание микроэлементов в лишайнике *Bryoria fuscescens* в северо-западном регионе // Международный журнал прикладных и фундаментальных исследований. 2024. № 10. С. 5–10. DOI: 10.17513/mjpfi.13659. EDN: RHZNPS.
- 3. Hamalainen A., Runnel K., Mikusinski R., Himelbrant D., Fenton N.J., Lohmus P. Living trees and diversity // Boreal forests in the face of climate change. Advances in Global Change Research. 2023. Vol. 74. P. 145–166. URL: https://link.springer.com/chapter/10.1007/978-3-031-15988-6_5 (дата обращения: 12.08.2025). DOI: 10.1007/978-3-031-15988-6_5.
- 4. Nirhamo A., Pykälä J., Jaaskelainen K., Kouki. J. Habitat associations of red-listed epiphytic lichens in Finland // Silva Fennica. 2023. Vol. 57 (1). 22 p. DOI: 10.14214/sf.22019.
- Ухобадзе А.Б., Филиппов Д.А. Новые местонахождения редких видов лишайников Вологодской области // Фиторазнообразие Восточной Европы. 2015. Т. 9. № 1. С. 121–131. EDN: TTMXIX.
- 6. Шихова Н.С. Эколого-геохимические особенности растительности южного Приморья и видоспецифичность арборифлоры в накоплении тяжелых металлов // Сибирский лесной журнал. 2017. № 6. С. 76–88. DOI: 10.15372/SJFS20170606.
- 7. Yelkenova B., Beisenova R., Tazitdinova R., Rakhymzhan Z., Karipbaeva N. Accumulation of Heavy Metals in the Needles of Scots Pine of the Semipalatinsk Pre-Irtysh Region and Burabay National Park // Journal of Environmental Management and Tourism. 2023. Vol. XIV, Is. 5 (69) P. 2242–2252. DOI: 10.14505/jemt.v14.5(69).06.
- 8. Gauslaa Y., Palmqvist K., Solhaug K.A., Holien H., Hilmo O., Nybakken L., Myhre L.C., and Ohlson M. Growth of epiphytic old forest lichens across climatic and successional gradients // Canadian Journal Forest Research. 2007. Vol. 37 (10). P. 1832–1845. DOI: 10.1139/X07-048.

- 9. Santaniello F., Djupstrom L., Ranius T., Weslien J., Rudolphi J., Thor G. Large proportion of wood dependent lichens in boreal pine forest are confined to old hard wood // Biodiversity and conservation. 2017. Vol. 26. P. 1295–1310. DOI: 10.1007/s10531-017-1301-4.
- 10. Kharpukhaeva T.M., Mukhortova L.V. Dynamics of interaction between lichens and fallen deadwood in forest ecosystems of the eastern Baikal region // Contemporary problems of ecology. 2016. Vol. 9 (1). P. 125–139. DOI: 10.1134/S1995425516010066.
- 11. Spribille T., Thor G., Bunnell F.L., Goward T., Bjork C. Lichens on dead wood: species substrate relationships in the epiphytic lichen floras of Pacific North-West and Fennoscandia // Ecography. 2008. Vol. 31. P. 741–750. DOI: 10.1111/j.1600-0587.2008.05503.x.
- 12. Панченко Д.В., Данилов П.И., Тирронен К.Ф. Состояние и использование популяций представителей семейства Оленьи (Cervidae) в Республике Карелия // Труды Карельского НЦ. 2018. № 4. С. 105–114. DOI: 10.17076/them808. EDN: XWCHNI
- 13. Панченко Д.В., Данилов П.И., Тирронен К.Ф., Паасиваара А., Красовский Ю.А. Особенности распределения

- копытных млекопитающих в пределах Карельской части Зеленого пояса Фенноскандии // Труды Карельского НЦ. 2019. № 4. С. 119–128. DOI: 10.17076/them997. EDN: XCXHME.
- 14. Анненков В.Г. Материалы по питанию тетеревиных птиц в Карелии // Русский орнитологический журнал. 2022. Т. 31. 2-е изд. Экспресс выпуск. № 2222. С. 3808–3815. EDN: FGRLFQ.
- 15. Larison J.R., Likens G.E., Fitzpatrick J.W., Crock J.G. Cadmium toxicity among wildlife in the Colorado Rocky Mountains // Nature. 2000. Vol. 406. № 6792. P. 181–183. DOI: 10.1038/35018068.
- 16. Кочкарев П.В., Перевозчикова М.А., Сергеев А.А., Ширяев В.В., Пиминов В.Н. Токсичные и биогенные элементы в органах и тканях белой куропатки (*Lagopus lagopus L.*, 1758) на севере Красноярского края (обзор) // Теоретическая и прикладная экология. 2024. № 3. С. 54–63. DOI: 10.25750/1995-4301-2024-3-054-063.
- 17. Загурская Ю.В., Сиромля Т.И. Элементный химический состав *Populus tremula* в условиях техногенных экосистем Кузбасса // Известия вузов. Лесной журнал. 2025. № 3 (405). С. 107–120. DOI: 10.37482/0536-1036-2025-3-107-120. EDN: DXWYZH.

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: The authors declare that there is no conflict of interest.

Финансирование: Работа выполнена по плановой теме НИР 2021–2025 гг. № 121032500047-1 «Растительность европейской части России и северной Азии: разнообразие, динамика и принципы организации».

Financing: The work was carried out according to the planned research topic for 2021–2025 No. 121032500047-1 "Vegetation of the European part of Russia and northern Asia: diversity, dynamics, and principles of organization".