УДК 556.55:502 DOI 10.17513/use.38090

ТЕХНОГЕННЫЕ ВОДОЕМЫ (ЗАБАЙКАЛЬСКИЙ КРАЙ): ЭКОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

Ташлыкова Н.А., Афонина Е.Ю., Замана Л.В., Абрамова В.А., Таскина Л.В., Куклин А.П.

ΦΓБУН «Институт природных ресурсов, экологии и криологии» Сибирского отделения Российской академии наук, Чита, e-mail: NatTash2005@yandex.ru

В Восточном Забайкалье за последние несколько десятков лет при разработке месторождений полезных ископаемых сформировалось достаточное количество разнообразных озерных образований. В зависимости от минералого-геохимических особенностей добываемого сырья эти новообразованные системы отличаются широким спектром физико-химических характеристик водной среды. Большинство водоемов находятся под влиянием высоких концентраций растворенных ионов (до 2618 мг/л) и имеют широкий диапазон значений рН (3,14-9,42). В статье охарактеризованы морфометрические параметры водоемов, химический состав вод, видовое разнообразие и структура сообществ фито- и зоопланктона карьерных озер Балейского золоторудного узла (Балейский, Новотроицкий и Тасеевский карьеры), Завитинского литий-бериллиевого и Жипкошинского сурьмяного месторождений. Водоросли и беспозвоночные этих водных систем изучены впервые. Планктон отличался низким видовым разнообразием – 51 таксон водорослей и 42 вида беспозвоночных. По географическому распространению в фито- и зоопланктоне доминируют космополиты, по местообитанию - планктонно-бентосные и планктонные виды водорослей и эврибионтные виды беспозвоночных. Численность и биомасса водорослей варьировали в пределах 4,8-22535,32 тыс. кл./л и 8,57-1565,52 мг/м 3 соответственно, беспозвоночных -13,19-542,63 тыс. экз./м 3 и 6,54-1992,60 мг/м 3 . Доминирующий комплекс сообществ фитопланктона обследованных водоемов носил цианобактериально-диатомовый характер с некоторой долей участия зеленых водорослей, зоопланктон слагался преимущественно мелкоразмерными формами – коловратками и младшевозрастными стадиями копепод.

Ключевые слова: Юго-Восточное Забайкалье, месторождение, техногенные водоемы, химический состав вод, фитопланктон, зоопланктон

MINING WATER BODIES (TRANSBAIKAL REGION): ENVIRONMENTAL FEATURES

Tashlykova N.A., Afonina E.Yu., Zamana L.V., Abramova V.A., Taskina L.V., Kuklin A.P.

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of the Russian Academy of Sciences, Chita, e-mail: NatTash2005@yadex.ru

In Eastern Transbaikalia over the past few decades, during the development of mineral deposits, a sufficient number of various lake formations have formed. Depending on the mineralogical and geochemical characteristics of the extracted raw materials, these newly formed systems are distinguished by a wide range of physicochemical characteristics of the aquatic environment. Most water bodies are under the influence of high concentrations of dissolved ions (up to 2618 mg/l) and have a wide range of pH values (3,14–9,42). The article describes the morphometric parameters of water bodies, the chemical composition of waters, species diversity and the structure of phyto- and zooplankton communities in quarry lakes of the Baleisky gold ore cluster (Baleysky, Novotroitsky and Taseevsky quarries), Zavitinsky lithium-beryllium and Zhipkoshinsky antimony deposits. The algae and invertebrates of these water systems have been studied for the first time. Plankton was characterized by low species diversity – 51 taxa of algae and 42 species of invertebrates. In terms of geographic distribution, phyto- and zooplankton are dominated by cosmopolitans; in terms of habitat, planktonic-benthic and planktonic species of algae and eurybiont species of invertebrates dominate. The number and biomass of algae varied within 4.8–22535.32 thousand cells/l and 8.57–1565.52 mg/m .54–1992.60 mg/m3. The dominant complex of phytoplankton communities in the surveyed water bodies was cyanobacterial-diatom in nature with some participation of green algae; zooplankton was composed mainly of small-sized forms – rotifers and young stages of copepods.

Keywords: South-Eastern Transbaikalia, deposit, technogenic reservoirs, chemical composition of waters, phytoplankton, zooplankton

Забайкальский край — старейший горнорудный регион России. Активная добыча полезных ископаемых велась в прошлом столетии и на некоторых объектах продолжается до настоящего времени [1, с. 147–225].

Длительная масштабная горнопромышленная деятельность приводит к значительным по площади и характеру преобразова-

ниям природных ландшафтов. Образуются техногенные формы рельефа — рудные карьеры, хвостохранилища, отвалы вскрышных и вмещающих пород, котлованы, выемки рудоносных песков, илоотстойники, дражные отвалы [2]. После открытой разработки рудных месторождений формируются водоемы, которые принято называть

«карьерными озерами», которые в зависимости от особенностей добываемого сырья отличаются широким спектром физико-химических характеристик водной среды [3].

Актуальность оценки состояния и перспектив развития новообразованных водных систем определяется прогрессирующим увеличением добычи полезных ископаемых открытым способом. Обводненные карьеры обладают принципиальным сходством гидрохимических, биопродукционных, седиментационных процессов с естественными лимническими системами, а также характеризуются рядом специфических черт, обусловленных техногенной природой и молодостью котловины [4]. Однако биологическая составляющая аквальных систем такого типа изучена слабо. В ряде работ представлены данные по некоторым группам гидробионтов: бактерии [5, 6], фитопланктон [7–9], зоопланктон [10–12] и пр.

Целью настоящей работы является изучение химического состава техногенных вод и основных характеристик планктонных сообществ.

Материалы и методы исследования

Основными объектами опробования в августе 2022 г. были карьерные озера Балейского рудного узла (Балейский, Новотроицкий и Тасеевский карьеры) Завитинского и Жипкошинского месторождений (рис. 1).

Балейско-Тасеевское рудное поле включает два золоторудных месторождения — Балейское и Тасеевское. Балейское месторождение было введено в эксплуатацию в 1929 г. и отрабатывалось подземным и открытым способами. Открытая разработка прекращена в 1992 г. из-за приближения контура карьера к жилой застройке г. Балей [13]. Балейский карьер имеет размеры около 1 км в длину и глубину более 133 м. Основными источниками водного питания являются подземные и инфильтрационные воды р. Унда. В карьер сбрасываются также городские сточные воды [2].

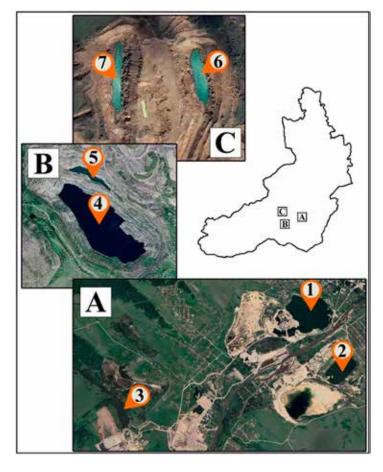


Рис. 1. Карта-схема основных пунктов опробования: А – Балейский рудный узел, В – Завитинское месторождение, С – Жипкошинское месторождение; Карьеры: 1 – Балейский, 2 – Тасеевский, 3 – Новотроицкий, 4 – Завитинский нижний, 5 – Завитинский верхний, 6 – Жипкошинский верхний, 7 – Жипкошинский нижний

Тасеевское месторождение разрабатывалось с 1948 по 1994 г. подземным и открытым способами. С 1994 г. Тасеевский карьер и все подземные горные выработки находятся в обводненном состоянии [14]. Новотроицкое месторождение ториеносных монацитсодержащих песков отрабатывалось с 1949 по 1964 г. Новотроицкий карьер в настоящее время затоплен [15].

Добыча руды на Завитинском бериллийлитиевом месторождении велась открытым способом. В 1997 г. рудник был закрыт. В настоящее время в контурах месторождения расположены отвалы вскрышных пород и два карьерных озера, которые используются местным населением п. Первомайский для отдыха и рыбной ловли [16].

Жипкошинское месторождение открыто в 1955 г. Площадь Жипкошинского карьера менее 0,001 км² [9].

Химико-аналитические исследования проб воды на макрокомпоненты и некоторые микроэлементы проведены в аттестованной лаборатории ИПРЭК СО РАН (г. Чита). Анализы водных проб методом масс-спектрометрии с индуктивно-связанной плазмой (МС-ИСП) выполнены в аналитическом центре Института геохимии им. А.П. Виноградова СО РАН (г. Иркутск). Электропроводность, температура, рН и Еh измерялись на месте опробования.

Сбор и анализ проб фито- и зоопланктона проводились с использованием стандартных методик [17, с. 47–58, 67–71, 18, с. 140–411]. Пробы фитопланктона отбирались из одного-трех горизонтов (приповерхностный, глубина прозрачности, придонный), пробы зоопланктона — тотально (дно — поверхность) средней сетью Джеди (размер ячеи сита 0,064 мм) и процеживанием 100 л воды (интегральная проба) через сеть (ячея 0,073 мм).

Всего было отобрано 30 водных и 38 планктонных проб.

Математическая обработка полученных данных проводилась с использованием пакета программ Microsoft Excel 2010, STATISTICA 10 и Origin 2021. Корреляционная карта (correlation heat map) сгенерирована с использованием Origin 2021.

Результаты исследования и их обсуждение

Основные морфометрические и физико-химические характеристики карьерных озер приведены в табл. 1.

Площадь изученных карьерных озер варьировала в широких пределах. Наимень-

шими являются карьеры Жипкошинского месторождения $(0,2-2,64 \text{ км}^2)$, наибольшими — Балейский (732257 м^2) и Завитинский нижний (434479 м^2) карьеры.

Максимальные глубины изменялись от 2 (Жипкошинский карьер (нижний)) до 133 м (Балейский карьер). Прозрачность воды варьировала от 0,5 до 6,5-7 м. Наибольшие значения отмечены в Балейском и Завитинском (нижнем) карьерах. Поверхностный слой воды в карьерных озерах прогревался до 13,2-21,0 °C. Воды карьерных озер по величине рН варьировали от кислых (3,14–3,27, Тасеевский карьер) до щелочных (9,42, Новотроицкий карьер). Значения Ећ находились в интервале от 121 (Завитинский (нижний) и Новотроицкий карьеры) до 600 мВ (Тасеевский карьер). По сумме ионов наиболее минерализованными были воды Тасеевского (2606–2618 мг/л) и Завитинского (1404– 1593 мг/л) карьеров, наименее – воды Новотроицкого (75,7 мг/л). По анионному составу воды карьерных озер сульфатные, реже – гидрокарбонатно-сульфатные. В катионном составе преобладали Ca²⁺ и Mg²⁺ в переменных соотношениях.

Фитопланктон карьеров представлен 51 таксоном водорослей рангом ниже рода, из 7 отделов – Cyanobacteria (8), Chrysophyta (2), Bacillariophyta (17), Dinophyta (3), Chlorophyta (13), Charophyta (4) и Euglenophyta (4). Наиболее разнообразными были диатомовые и зеленые водоросли, а также цианобактерии (33,3; 25 и 16,7% соответственно). Максимальное богатство водорослей наблюдалось в Балейском озере (до 30 таксонов); минимальное (0-7) – в Тасеевском. Распределение видовой насыщенности фитопланктона, оцененной значениями удельного видового богатства, показало, что воды обследованных техногенных водоемов мало разнообразны в таксономическом отношении (11 ± 7 таксонов в пробе).

Анализируя соотношение отделов волорослей в обследованных водоемах. можно отметить преобладание отделов Chlorophyta и Bacillariophyta в Завитинском и Новотроицком карьерах. Cyanobacteria, Chlorophyta и Bacillariophyta имели наибольший вес в Балейском карьере, а представители Bacillariophyta преобладали в Жипкошинском и Тасеевском карьерах. Доминирующий комплекс фитопланктона водоемов отличался. Преимущественно он носил цианобактериально-диатомовый характер с некоторой долей участия зеленых водорослей.

Таблица 1

Физико-химические параметры (min-max) техногенных вод горнопромышленных объектов рудных месторождений Восточного Забайкалья

Название	Балейски	Балейский золоторудный узел	ел	Жипкошинск месторс	Жипкошинское сурьмяное месторождение	Завитинское лит месторс	Завитинское литий-бериллиевое месторождение
станции	Новотроицкий моноцитовый карьер	Тасеевский карьер	Балейский карьер	Жипкошинский карьер верхний	Жипкошинский карьер нижний	Завитинский карьер верхний	Завитинский карьер нижний
Координаты	N 51°32.824" E 116°34.940"	N 51°33.491" E 116°39.126"	N 51°34.204" E 116°38.504"	N 51°36.115" E 115°15.365"	N 51°36.489" E 115°15.227"	N 50°41.127" E 115°36.701"	N 50°40.649" E 115°37.069"
Alt	636	571,8–575	560–1298	8	847	999	605
S	126269	281136	732257	2283	2034	29816	434479
Н	10,1	72	133	5'9	2	11,3	33,0
TR	0,5	5	6,5	4,5	2	9	7
T	13,2	18–18,6	17,6–19,6	18,4–19,5	18,1–19,9	18,2–21	21,0
Hd	9,42	3,14–3,27	7,55–8,16	8,4–8,59	8,44–8,46	6,68–7,32	8,24
Eh	138	539–600	159–196	279–338	261–315	231–281	121
<u> </u> Тионов	75,7	2606–2618	771–792	213–217	262–265	1404 - 1593	1238
CO,	9,58	-	7,95–8,13	3,68–4,16	4,36–4,84	6,39–8,62	3,87
HCO_{3}	51,7	-	104–109	78,6–78,8	103 - 103,2	27,1–28,3	114,5
$SO_4^{2\bar{c}}$	5,7	1964–1996	412–430	5,5-77,3	80-95,2	952–1121	740,2
CI-	0,8	10,1-10,7	29,4–29,5	69,0	0,3-0,69	14,5–14,6	31,6
규	0,29	2,15–2,2	0,4-0,41	0,27-0,28	0,37-0,38	1,25-1,3	0,53
Ca^{2^+}	10,1	225–233	138–145	39,9–42,9	45,5–53,8	293–310,4	244,9
${ m Mg}^{2+}$	2,82	217–220	56,4–57,5	6,68-7,06	11,6–13,6	78,8–81	09
$\mathrm{Na}^{\scriptscriptstyle +}$	1,49	101–111	15,8–16,5	6,36–6,38	5,32–6,18	22,9–23,7	32,3
± <u>*</u>	0,69	5,15–5,16	6,37–6,39	2,17–2,31	3,02–3,49	13–13,3	11,3
NO ₃ -	0,52	0,47–0,51	2,68–3,31	1,99-2,03	0,64-0,83	0,43-0,68	2,51
NO.	0,052	< 0,003	0,044-0,057	0,03-0,08	0,01-0,1	0,03	0,05
NH	1,12	5,92–6,91	< 0,1	< 0,1	< 0,1	< 0,1–0,17	< 0,1
Si	5,7	10,2–10,3	0,5-0,73	9,79–9,93	8,34–8,56	7,03–7,17	1,16
<u>а</u>	0,063	0,27	0,025-0,027	0,25	0,28-0,31	0,03-0,05	0,02

Примечание: Alt – абсолютная высота (в м); S – площадь (по космоснимку, в м²); H – глубина (в м); TR – прозрачность (в м); T – температура (в °С); Еh – окислительно-восстановительный потенциал (мВ); Σ ионов – сумма ионов (в мг/л); CO_2 , – концентрация углекислого газа (в мг/л); концентрация (в мг/л) НСO $_3$ – гидрокарбонат-ионов; SO_4^{2-} – сульфат-ионов; CI – хлорид-ионов; F – фторид-ионов; Ca^{2+} – ионов кальция; Mg^{2+} – ионов магния; Na^+ – ионов натрия; K^+ ионов калия; NO_3^{2-} – нитрат-ионов; NO_2^{2-} – нитрит-ионов; NH_4^+ – ионов аммония; SI – кремний; P – фосфор, «—» – данные отсутствуют.

Подавляющее число выявленных видов являются космополитами с широкой экологической валентностью (96%). По биотопической приуроченности преобладают факультативно-планктонные и типично планктонные формы — 82% общего числа видов. Флора планктона карьерных озер представлена в основном пресноводными видами — индифферентами — более 60% — и пресноводно-солоноватоводными видами — галофилами — 33,3%. Анализ распределения водорослей в зависимости от активной реакции показал, что большинство водорослей обследованных водоемов — это алкалифилы (90%).

Количественное развитие водорослей в карьерных озерах варьировало в широком диапазоне (табл. 2).

Численность водорослей изменялась от 4,8 (Жипкошинский верхний) до 22535,52 тыс. кл./л (Новотроицкий), биомасса — от 8,57 (Жипкошинский верхний) до $1565,52 \text{ мг/м}^3$ (Завитинский нижний).

Индекс Шеннона изменялся от 0,49 до 3,12 бит, индекс Пиелоу – от 0,20 до 0,87, индекс доминирования – 0,12 до 0,86 (табл. 2). Полученные высокие значения индексов видового разнообразия, полученные для Балейского карьера, указывают на сложность структуры и высокое разнообразие фитопланктонного сообщества, а также подтверждают полидоминантность доминирующего комплекса фитопланктона. Для остальных карьеров характерны монодоминантные сообщества водорослей с низким видовым разнообразием.

Настоящие результаты подтверждают выводы других исследований [6, 9] о том, что видовое богатство водорослей в неагрессивных и нейтрально-слабощелочных водах значительно выше, чем в водоемах с низким значением рН. Уровень развития водорослей также сравнительно выше в водоемах техногенной природы, которые схожи с естественными лимническими системами.

Зоопланктон техногенных водоемов характеризовался невысоким видовым богатством. Всего отмечено 42 таксона рангом ниже рода, из них 18 видов Rotifera, 14 — Cladocera и 10 — Сорерода. Общее количество таксонов изменялось от 5 (Тасеевский карьер) до 17 (Новотроицкий карьер). Виды имели преимущественно широкое распространение (космополиты — 59%, голаркты — 24%, палеаркты — 17%). По приуроченности к местообитанию, в составе зоопланктона превалировали эврибионтные виды (45%). На втором месте — истинно планктонные

виды (19%), на третьем – виды, приуроченные к литоральной зоне (16%). Доля фитофильных и бентических представителей составляла соответственно 13 и 7%.

Интересной находкой является коловратка *Brachionus sericus*, обитающая в массе в Тасеевском карьере. Вид является типичным ацидобионтом, широко распространенным в сильнокислых водоемах Европы, Америки (Deneke, 2000). В кислых водах Шерловогорского карьера виды зоопланктона не встречались [9].

Количественные показатели беспозвоночных были низкими и изменялись от 13,19 тыс. экз./м³ и 6,54 мг/м³ (Новотроицкий карьер) до 542,63 тыс. экз./м³ (Жилкошинский нижний карьер) и 1992,60 мг/м³ (Балейский карьер) (табл. 2).

Показатели индексов разнообразия (H_n, I_d, е) варьировали в широком диапазоне: от 0,07 до 3,13 бит, от 0,18 до 0,98, от 0,03 до 0,98 соответственно. По условному разделению значений индексов водоемы классифицировались от олиго-мезотрофного типа с высоким видовым разнообразием и выравненностью сообщества зоопланктона (водоемы Балейского месторождения) до характеристик, указывающих на экстремальные экологические условия (водоемы Тасеевского и Жипкошинского месторождений).

Корреляционные тепловые карты (рис. 2), построенные для карьерных озер, определили факторы, влияющие на развитие планктонных сообществ.

Для планктона Балейского озера корреляционным анализом выявлена сильная теснота связи (-0,9998–0,9992, p < 0,05) обилия всех групп водорослей с глубиной, прозрачностью, температурой, pH, Eh, с содержанием CO_2 , HCO_3^- , SO_4^{2-} , NO_3^- , NO_2^- . Для зоопланктона установлена тесная взаимосвязь содержания ионов Mg^{2+} и Na^+ с численными характеристиками коловраток и содержания ионов NO_3^- , NO_2^- , P с биомассой кладоцер.

В Новотроицком карьере отмечена тесная достоверная отрицательная корреляция pH с численностью коловраток (-0,9506, р < 0,049) и достоверная положительная связь с H_n (0,9695, р < 0,030). Других достоверных корреляций не отмечено.

В Тасеевском карьере выявлена отрицательная корреляционная зависимость в диапазоне от -0,9950 до -0,9948 (р < 0,05) численности диатомовых и эвгленовых водорослей с Р, K^+ и NO_3^- . Численность зоопланктона достоверно (р < 0,05) отрицательно коррелировала с температурой (-0,9789), NO_3^- (-0,9859) и положительно – с NH_4^{-+} (0,9937) и SO_4^{-2} (0,9926).

Таблица 2

Показатели структуры (N – численность, B – биомасса) и разнообразия (H_n – индекс Шенона, I_d – индекс доминирования, е-индекс Пиелоу) планктона техногенных водоемов в августе 2022 г.

				ктона техног	енных водоемо	планктона техногенных водоемов в августе 2022 г.			
	Hs	Название станции	Новотроицкий карьер	Тасевский карьер	Балейский карьер	Жипкошинский верхний карьер	Жипкошинский нижний карьер	Завитинский верхний карьер	Завитинский нижний карьер
					Фитопланктон				
Dr		N, тыс. кл./л	1277,90–22535,52	0-37,34	643,00-929,88	4,8–36,12	0,62–16,1	52,44–195,92	384,56–589,10
		$B, M\Gamma/M^3$	309,37–1215,27	0-27,68	183,75–674,56	8,57–18,67	0,124–13,78	99,90–127,17	324,82–1565,52
/ (E)		Cyanobacteria	1161,52–22052,16	0	517,20–699,22	0	0-0.84	0	0
		Chrysophyta	1,38–18,24	0	0	0	0	1,84–3,72	0
		Bacillariophyta	112,7–465,12	0–32,63	10,25–63,08	0-1,68	0,62-16,1	20,24–186,00	376,68-573,62
	z	Dinophyta	0	0	1,36–4,56	0	0	3,72–14,72	3,51-19,44
		Chlorophyta	0-0,46	0	110,16–159,22	4,8–34,44	0	2,48–15,64	1,72-6,84
(T)		Charophyta	0-1,84	0	3,040-4,08	0	0-0,84	0	0
		Euglenophyta	0	0-4,71	0-0,76	0	0	0	0-0,87
		Cyanobacteria	223,14–749,64	0	25,04–48,77	0	0-0,02	0	0
		Chrysophyta	0,83–10,94	0	0	0	0	2,39–3,49	0
		Bacillariophyta	84,24-454,69	0-27,25	78,67–493,11	0-0,34	0,124–13,78	13,2–65,28	214,71-989,00
T T T	В	Dinophyta	0	0	43,52–140,22	0	0	29,76–110,40	101,62-563,76
		Chlorophyta	0-0,5	0	10,3415,16	8,57–18,33	0	1,18–1,37	0,03-12,76
		Charophyta	0-1,11	0	0-2,45	0	0-0,76	0	0
<u> </u>		Euglenophyta	0	0-0,43	0-0,04	0	0	0	0
	Дом	Доминирующие виды	Asp, Ac	Nsp	Gc, Mp	Aa, Om	Nsp	Fc, Fr, Psp	Fc, Nsp
023		Н _n , бит	0,49–1,69	2,2	1,98–2,76	0,59	1,92–3,12	0,74–2,67	0,49–1,09
		I_{d}	0,39–0,86	6,0	0,23-0,32	0,83	0,12-0,28	0,19-0,80	0,44-0,85
		e	0,35-0,53	0,2	0,79-0,87	0,42	0,35-0,38	0,38-0,79	0,35-0,64

Окончание табл. 2

Ha	Название станции	Новотроицкий карьер	Тасеевский карьер	Балейский карьер	Жипкошинский верхний карьер	Жипкошинский нижний карьер	Завитинский верхний карьер	Завитинский нижний карьер
				Зоопланктон				
4	N, Thic. $3k3./M^3$	13,19–76,61	26,68–47,39	42,81–74,54	131,10–182,57	146,21–542,63	14,62–21,71	17,53–22,14
	$B, M\Gamma/M^3$	6,54–161,29	15,18–69,32	272,33–1992,60	191,79–1101,25	324,63–880,54	26,05–93,98	54,52–176,96
	Rotifera	11,99–72,28	26,68–47,35	18,33–38,27	128,1–176,66	144,50–539,60	9,74–20,43	3,34-11,93
Z	Copepoda	1,16-1,49	0-0,02	17,12–24,70	2,88–4,50	0,62-0,86	1,24–4,88	1,93-13,99
	Cladocera	0,04–2,83	0-0,02	7,36–11,57	0,14–1,41	0,85–2,42	0-0,04	3,68-4,81
	Rotifera	6,03–20,01	15,18–69,02	112,67–401,35	132,09–183,58	150,74–625,15	10,16–23,8	2,54-17,02
В	Copepoda	6,54–39,48	0-0,07	0,859–66,681	20,16–27,75	1,09–37,90	2,16–83,82	6,26-152,50
	Cladocera	0,26–101,80	0-0,23	19,67–933,25	31,95–897,50	135,99–254,34	60,0-0	21,91-31,24
Домк	Доминирующие виды	Kl, Sp, Kc	Bu	Fl, Cycl, Ni, Ed	Kq	Kq	Kq, Cycl	Cv, Kq, Ed, Dl
	Н _п , бит	2,35–3,13	0,2	2,59–2,85	0,33–0,46	0,07-0,15	0,63-0,92	1,20–2,25
	I_d	0,18–0,38	0,97	0,20-0,25	0,92	0,98	0,55-0,84	0,23-0,45
	e	0,78–0,98	0,13	0,70–0,96	0,17–0,20	0,03-0,10	0,45–0,68	0,62-0,97

crotonensis Kitton 1869; Fr – Fragilaria radians (Kützing) D.M. Williams & Round 1988, Ed – Euchlanis dilatata Ehrenberg, 1832; Bu – Brachionus urceus sericus Rousselet, 1907; Kq – Keratella quadrata (Müller, 1786); Kc – K. cochlearis (Gosse, 1851); Kl – Kellicottia longispina (Kellicott, 1879); Sp – Synchaeta pectinata Ehrenberg, 1832; Fl – Filinia longiseta (Ehrenberg, 1834); Dl – Daphnia longispina s.lat. (O.F. Müller, 1785); Ni – Neutrodiaptomus incongruence (Poppe, 1888); Cv – Cyclopoida. - Microcystis pulverea (H.C.Wood), 1907; Aa - Ankyra ancora f. issaevi (Kisselev) Fott 1974; Om - Oocystis marssonii Lemmermann 1898; Fc - Fragilaria Примечание: Asp-Anabaena sp.; Ac-Aphanothece clathrate West & G.S.West 1906; Nsp-Nitzschia sp.; Gc-Gloeocapsa crepidinum (Thuret) Thuret 1876; Mp

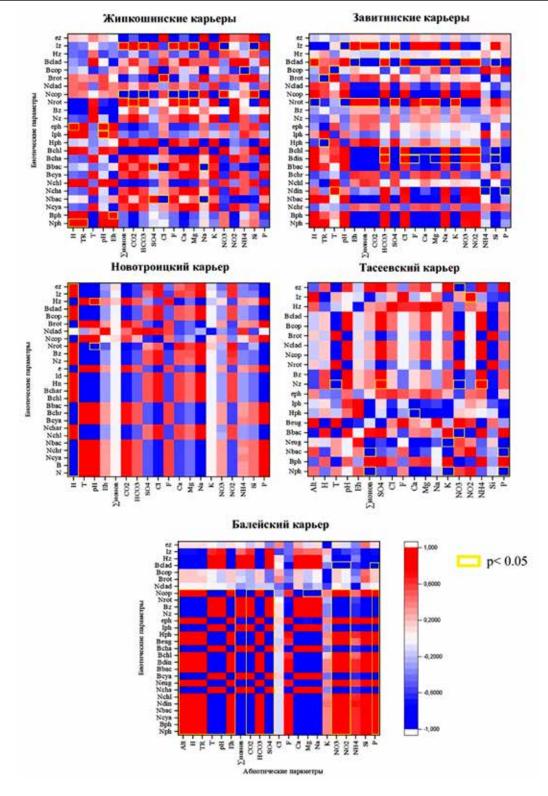


Рис. 2. Коэффициенты корреляции между показателями планктона и физико-химическими показателями: Alt — абсолютная высота (в м); S — площадь (в км²); H — глубина (в м); T — прозрачность (в м); T — температура (в °C); pH; E — окислительновосстановительный потенциал (мВ); Σ ионов — сумма ионов (в мг/л); CO_2 — концентрация углекислого газа (в мг/л); концентрация (в мг/л); HCO_3 — гидрокарбонат-ионов; SO_4^{-2} — сульфатионов; C^1 — хлорид-ионов; NO_3 — нитрат-ионов; NO_3 — нитрит-ионов кальция; Mg^{2+} — ионов магния; Na^+ — ионов натрия; K^+ — ионов калия; NO_3^- — нитрат-ионов; NO_3^- — нитрат-ионов аммония; NO_3^- — кремний; NO_3^- — фосфор

Для Завитинских карьеров корреляционный анализ позволил выявить сильную положительную и отрицательную тесноту связи (-0,9524 — -0,9994...0,9597 — 0,9989, р < 0,05) обилия динофитовых и зеленых водорослей, а также коловраток и ветвистоусых с показателями макрокомпонентного состава.

В Жипкошинских карьерах для планктона отмечены высокие значения значимых корреляций (р < 0,05) со многими переменными окружающей среды. Так, численность фитопланктона положительно коррелировала с глубиной и прозрачностью воды, биомасса - с Ећ. Численность и биомасса диатомей - отрицательно с содержанием Na^+ , Cl^- и положительно – с SO_4^{2-} . Индексы видового разнообразия – положительно с рН и глубиной. Численность Rotifera положительно коррелировала с содержанием СО₂, Са²⁺, биомасса – отрицательно с SO₄²-. Для численности Copepoda установлена высокая отрицательная связь с суммой ионов , Mg^{2+} , HCO_{3-} , F^{-} , и положительная – с NO, и Si.

Таким образом, во всех карьерных озерах, за исключением Новотроицкого, организмы планктона наиболее чувствительны к макрокомпонентному составу вод. Гидрохимический состав оказывает влияние на динофитовые, зеленые и диатомовые водоросли и коловраток. Для Новотроицкого карьера определяющим фактором является щелочность вод.

Наши результаты по влиянию факторов среды на развитие гидробионтов подтверждаются исследованиями других авторов [11], показавшими, что состав и структура планктонных биоценозов в техногенных водоемах определяются совокупностью комплекса абиотических параметров.

В обследованных карьерных водоемах видовое богатство фито- и зоопланктона формировали 48 таксонов водорослей рангом ниже рода и 42 вида беспозвоночных. По таксономическому составу фитопланктон имел цианобактериально-диатомовый характер с некоторой долей участия зеленых водорослей. В зоопланктоне качественно богатыми были коловратки и ветвистоусые ракообразные.

По географическому распространению в фито- и зоопланктоне доминируют космополиты, по местообитанию — планктоннобентосные и планктонные виды водорослей и эврибионтные виды беспозвоночных, что в целом отражает экологическое состояние водоемов и сложившиеся в них условия. Диапазон численности фитопланктона изменялся от 37,34 до 22535,52 тыс. кл./л. биомассы — от 27,28 до 1565,52 мг/м³. Общая численность зоопланктона варьировала в пределах 13,19—542,63 тыс. экз./м³. Доминирующий комплекс сообществ зоопланктона слагался преимущественно мелкоразмерными формами (Rotifera и ювенильные Cyclopoida), что и обусловило низкие значения общей биомассы (6,54—1992,60 мг/м³).

Значения индексов видового разнообразия по фитопланктону, полученные для Балейского карьера, указывают на сложность структуры и высокое биоразнообразие сообщества, а также подтверждают полидоминантность доминирующего комплекса фитопланктона. Для остальных карьеров характерны монодоминантные сообщества водорослей с низким видовым разнообразием. По зоопланктону, Балейское, Новотроицкое и Завитинское карьерные озера можно отнести к водоемам мезотрофного типа. Тасеевский карьер отличался экстремальными экологическими условиями, вследствие низких показателей рН.

Список литературы

- 1. Геологические исследования и горнопромышленный комплекс Забайкалья: история, современное состояние, проблемы, перспективы развития. Новосибирск: Наука, Сибирская издательская фирма РАН, 1999. 574 с.
- 2. Замана Л.В., Вахнина И.Л., Усманов М.Т., Филенко Р.А. Экологическая оценка золотопромышленных ландшафтов Балея (Восточное Забайкалье) // Материалы XIII Научного совещания географов Сибири и Дальнего Востока. Иркутск: Издательство Института географии им. В.Б. Сочавы Сибирского отделения Российской академии наук, 2007. С. 46—47.
- 3. Замана Л.В., Чечель Л.П. Эколого-геохимическая оценка водоемов рудных карьеров Восточного Забайкалья // Эволюция биосферы и техногенез: материалы всероссийской конференции с международным участием. Чита: ИПРЭК СО РАН, 2016. С. 121–124.
- 4. Хомич С.А. Подходы к оценке состояния и перспектив развития объектов водохозяйственной рекультивации // Литосфера. 1996. № 6. С. 80–92.
- 5. She Z., Pan X., Wang J., Shao R., Wang G., Wang S., Yue Z. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake // Water Research. 2021. Vol. 206. P. 117739. DOI: 10.1016/j.watres.2021.117739.
- 6. Seckbach J., Chapman D.J., Garbary D.J., Oren A., Reisser W. Algae and cyanobacteria under environmental extremes: final comments. Algae and Cyanobacteria in extreme environments // Cellular origin, life in extreme habitats and astrobiology. 2007. Vol. 11. Dordrecht: Springer. P. 783–786. DOI: 10.1007/978-1-4020-6112-7 42.
- 7. Wołowski K., Uzarowicz Ł., Łukaszek M., Pawlik-Skowrońska B. Diversity of algal communities in acid mine drainages of different physico-chemical properties // Nova Hedwigia, 2013. Vol. 97 (1–2). P. 117. DOI: 10.1127/0029-5035/2013.
- 8. Paulsson O., Widerlund A. Algal nutrient limitation and metal uptake experiment in the Åkerberg pit lake, northern Sweden // Applied Geochemistry. 2021. Vol. 125. 104829. DOI: 10.1016/j.apgeochem.2020.104829.

- 9. Афонина Е.Ю., Ташлыкова Н.А., Замана Л.В., Куклин А.П., Абрамова В.А., Чечель Л.П. Гидрохимия и гидробиология техногенных водоемов горнопромышленных территорий Юго-Восточного Забайкалья // Аридные экосистемы. 2022. Т. 28, № 4 (93). С. 189–200.
- 10. Pociecha A., Bielańska-Grajner I., Szarek-Gwiazda E.E., Wilk-Woźniak E., Kuciel H., Walusiak E. Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland) // Mine Water Environment. 2018. Vol. 37. P. 518. DOI: 10.1007/s10230-017-0492-y.
- 11. Mondal S., Palit D., Hazra N. Study on composition and spatiotemporal variation of zooplankton community in coal mine generated pit lakes, West Bengal, India // Tropical Ecol. 2022. Vol. 64 (9). DOI: 10.1007/s42965-022-00274-6.
- 12. Goździejewska A.M., Koszałka J., Tandyrak R., Grochowska J., Parszuto K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes // Hydrobiologia. 2021. Vol. 848. P. 2699–2719. DOI: 10.1007/s10750-021-04590-1.
- 13. Верхотуров А.Г., Карпов В.В. Проблемы устойчивости бортов затопленного карьера в г. Балее // Кулагинские

- чтения: техника и технологии производственных процессов. 2021. С. 129–134.
- 14. Худорба О.А., Гребнев Е.А. Оценка современного состояния инженерно-геологических условий Тасеевского золоторудного месторождения // Науки о Земле и недропользование. 2007. Т. 31, № 5. С. 116–119.
- 15. Корольков А.Т. Монацитовая проблема города Балея // Известия Сибирского отделения. Секции наук о Земле РАЕН. 2016. № 1 (54). С. 96–103.
- 16. Абрамова В.А. Рудные элементы в карьерных водах Завитинского редкометалльного месторождения (Восточное Забайкалье) // Геологическая эволюция взаимодействия воды с горными породами: материалы третьей Всероссийской научной конференции с международным участием (Чита, 20–25 августа 2018 г.). Улан-Удэ: Бурятский научный центр Сибирского отделения РАН, 2018. С. 328–331.
- 17. Садчиков А.П. Методы изучения пресноводного фитопланктона. М.: Университет и школа, 2003. 157 с.
- 18. Киселев И.А. Планктон морей и континентальных водоемов. Т. 1. Л.: Наука, 1969. 658 с.