СТАТЬИ

УДК 633.351:631.52 DOI 10.17513/use.38082

ПРОНИЦАЕМОСТЬ КЛЕТОЧНЫХ МЕМБРАН КАК СПОСОБ ОПРЕДЕЛЕНИЯ ЗАСУХОУСТОЙЧИВОСТИ ОБРАЗЦОВ ЧЕЧЕВИЦЫ

¹Маслова Г.А., ¹Башинская О.С., ¹Ларина Т.В., ¹Бычкова В.В., ²Миронов И.В.

¹ФГБНУ «Российский научно-исследовательский и проектно-технологический институт сорго и кукурузы», Capamoв, e-mail: galina.bochkareva.92@mail.ru;

²ФГБОУ ВО «Саратовский государственный университет генетики, биотехнологии и инженерии имени Н.И. Вавилова», Саратов

В статье представлены результаты двухлетних исследований по определению засухоустойчивости мелкосемянных и крупносемянных (тарелочных) сортообразцов чечевицы. Исследования проведены с использованием кондуктометра и дальнейшим вычислением уровня повреждения клеточных мембран. В результате проведенной работы степень повреждения составила в 2021 г.: от низких значений 2% до значительных 19%; в 2022 г. вариация изменилась и составила 6,90-15,26%; среднее значение отмечено на уровне 10,92%, ошибка разности средних, $sx = \pm 0.95$, степень депрессии составила 8.92. Коэффициент вариации отмечен на уровне 24,68% в двухлетних исследованиях. Выявлены образцы с высокой устойчивостью к засухе: российский сортообразец тарелочной чечевицы к-2850, мелкосемянные - к-1850 (Армения) и к-2365 (Швеция). Провели анализ структуры урожая исследуемых образцов и качественных показателей семян. Наибольшим числом бобов на одном растении, в которых число семян с одного растения показало самые высокие значения, отличались мелкосемянные образцы: к-1850 (66,48 и 96,17 шт. соответственно), к-1964 (56,90 и 81,40 шт. соответственно); крупносемянный: к-3061 (56,80 и 54,40 шт. соответственно). Вариация значений признака «масса 1 тыс. семян» мелкосемянной чечевицы составила 23,50-32,85 г, тарелочной чечевицы 52,82-67,50 г. Среднее содержание протеина в выборке составило 30,73 %. Наибольший показатель наблюдался у к-1978 – 32,18%, наименьший - к-2839 - 28,44%. При изучении тарелочной чечевицы различия были несущественными - среднее значение составило 29,16%. В сравнительной оценке биометрических и биохимических показателей исследуемых сортообразцов со степенью повреждения клеточных мембран чечевицы выявили отсутствие статистически значимых взаимосвязей. Можно предположить, что в анализ вошли сортообразцы, многие из которых не являются засухоустойчивыми.

Ключевые слова: чечевица, сортообразец, экзосмос, степень повреждения, клеточные мембраны, засухоустойчивость, урожайность

PERMEABILITY OF CELL MEMBRANES AS A WAY TO DETERMINE THE DROUGHT RESISTANCE OF LENTIL SAMPLES

¹Maslova G.A., ¹Bashinskaya O.S., ¹Larina T.V., ¹Bychkova V.V., ²Mironov I.V.

¹Russian Research Institut for Sorghum and Maize «Rossorgo», Saratov, e-mail: galina.bochkareva.92@mail.ru;

²Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov

The article presents the results of a two-year study to determine the drought resistance of small-seeded and large-seeded (platter) varieties of lentils. The studies were carried out using a conductometer and further calculation of the level of damage to cell membranes. As a result of the work carried out, the degree of damage in 2021 was: from low values of 2% to significant 19%; in 2022, the variation changed and amounted to 6.90-15.26%; the mean value was noted at the level of 10.92%, the error of the difference between the means, $sx = \pm 0.95$, the degree of depression was 8.92. The coefficient of variation is noted at the level of 24.68% in two-year studies. Samples with high resistance to drought were identified: the Russian variety sample of plate lentil k-2850, small-seeded k-1850 (Armenia) and k-2365 (Sweden). The structure of the yield of the studied samples and the quality indicators of seeds were analyzed. The largest number of beans per 1 plant, in which the number of seeds from 1 plant showed the highest values, was noted by small-seeded samples: k-1850 (66.48 and 96.17 pcs., respectively), k-1964 (56.90 and 81.40 pcs., respectively); large-seeded: k-3061 (56.80 and 54.40 pieces, respectively). The variation in the values of the characteristic «weight of 1 thousand seeds» of small-seeded lentils was 23.50-32.85 g, plate lentils 52.82-67.50 g. The average protein content in the sample was 30.73 %. The highest indicator was observed in k-1978 – 32.18%, the smallest – k-2839 – 28.44%. In the study of plate lentils, the differences were not significant - the average value was 29.16%. In a comparative assessment of the studied indicators of lentil samples, the degree of damage to cell membranes and quantitative/qualitative indicators, there were no statistically significant relationships. It can be assumed that the analysis included varieties, many of which are not drought-resistant.

Keywords: lentils, varietal, exosmosis, degree of damage, cell membranes, drought resistance, yield

Большое народнохозяйственное значение в продовольственных целях для выращивания на семена, богатые протеином, представляет чечевица. Расширение ее посевных площадей связано с достойными вкусовыми качествами, а также содержанием в семенах протеина на уровне 27 % [1, 2]. Хотелось бы отметить, что достаточно высокие урожаи культуры отмечены в северной зоне РФ, где благоприятны почвенноклиматические условия. Однако снижение качества семян наблюдается в годы, когда период уборки сопровождается выпадением осадков. В аридных же зонах нашей страны получение высоких урожаев затруднено, необходимо выведение высокопродуктивных адаптированных сортов, устойчивых к различным стрессорам [1–3]. В качестве сравнения рассматривали безлисточковые сорта гороха, указанные в работах Н.Е. Новиковой, где установлено наибольшее понижение продуктивности в Центрально-Черноземном регионе России в годы с жаркой засушливой погодой [3]. А так как для многих областей России достаточно распространенным явлением отмечены неустойчивые водно-тепловые и климатические условия, в селекции чечевицы необходимо выведение засухоустойчивых сортов, энергетические ресурсы которых будут направлены на формирование урожая с высоким количественным и качественным составом белка [1, 4, 5]. В литературных источниках все чаще встречаются данные о влиянии засухи на морфологические, физиологические и биохимические процессы в сельскохозяйственных растениях, засухоустойчивые растения способны изменять длительность фенологических фаз, благодаря разным особенностям строения и физиологии, что указывает на их приспособленность к перенесению периодов с высокими температурами и низким количеством осадков [5–7].

Известно множество способов оценки засухоустойчивости полевых культур [7, 8], в наших работах по определению засухоустойчивых сортообразцов чечевицы служила оценка степени повреждения клеточных мембран, вычисленная при помощи кондуктометра. Данный метод дает представление о стабильности клеточных мембран [9]. Данный метод отражает адаптацию растительного организма к сложившимся условиям исследуемого года, что дает возможность спрогнозировать потенциал растения.

Цель исследования – провести сравнительную оценку результатов выхода электролитов из листьев растений чечевицы

и определить образцы с высокой устойчивостью к засухе по низкому уровню повреждения клеточных мембран; при помощи корреляционного матрикса биометрических и биохимических показателей исследуемых сортообразцов выявить взаимосвязи со степенью повреждения клеточных мембран чечевицы.

Материалы и методы исследования

Материалы исследований разделены на две группы - мелкосемянные и крупносемянные образцы чечевицы (фактор А), так как они обладают различной степенью засухоустойчивости: наиболее устойчивые и среднеустойчивые соответственно. В исследования включены сортообразцы мелкосемянной: к-1850 (Армения), к-1894 (Германия), к-1978 (Индия), к-2839 (Канада), к-2872 (США), к-2365 (Швеция), к-1964 (Эфиопия) и крупносемянной (тарелочной) чечевицы: к-1043 (Италия), к-2850 (Россия), к-3061 (Украина). Работа проведена при помощи кондуктометра для получения результатов выхода электролитов из листьев растений чечевицы. При дальнейшем вычислении уровня повреждения клеточных мембран определяли образцы с высокой устойчивостью к засухе [4]. Измерения проводились в 2021 и 2022 гг. (фактор В). При изучении морфометрических признаков использовали международный классификатор СЭВ рода Lens Mill. (1985) с определением следующих показателей: высота растений, высота прикрепления нижнего боба. Анализ элементов урожайности состоял из следующих признаков: количество бобов и семян, массы семян с одного растения и массы 1 тыс. семян.

Анализ биохимического состава зерна проводили в отделе биохимии и биотехнологии ФГБНУ РосНИИСК «Россорго» на инфракрасном анализаторе марки Spectra Star TMXT.

Статистическая обработка экспериментальных данных была выполнена с использованием пакета программ AGROS 2.09 методом дисперсионного анализа. Оценку существенности различий между полученными экспериментальными данными проводили по величине наименьшей существенной разницы (HCP_{05}) .

Результаты исследования и их обсуждение

Данные выхода электролитов из листьев растений изучаемых сортообразцов чечевицы в первой партии получены: в 2021 г. от 74,5 (к-1894) до 121,5 µS/cm (к-1043);

в 2022 г. — от 53,0 (к-1850) до 90,0 µS/см (к-2365). Во второй партии листьев (после 3 ч медленного увядания) удельная электропроводность раствора была: 2021 г. — от 81,0 (к-3061) до 98,0 µS/см (к-1894); 2022 г. — от 54,0 (к-1978) до 105,5 µS/см (к-2872). После кипячения средний выход электролитов увеличился по сравнению с контролем в 2021 г. в 3,46 раза, в 2022 г. в 5,01 раз, однако в опыте с предварительным увяданием после кипячения величина удельной электропроводности раствора показала увеличение всего в 2,79 (2021 г.) и 3,37 (2022 г.) раза.

По результатам выхода электролитов складывается понимание проницаемости клеточных мембран. При подсчете степени повреждения исследуемых образцов выявлены образцы с высокой устойчивостью (низкая степень повреждения < 10%) в лабораторных условиях в 2021 г. – к-2872, к-2850, к-1043, к-2839, к-2365, к-1964; в 2022 г. – к-1850, к-2850, к-2365. Необходимо отобразить российский образец чечевицы - к-2850, по результатам двухлетних данных который обладал самой высокой устойчивостью (степень повреждения у него составила всего 5,40%). Среднее значение отмечено на уровне 10,92%, ошибка средней, $sx = \pm 0.95$, степень депрессии составила 8,92. Коэффициент вариации в результате двухлетних исследований составил 24,68%, данное значение указывает на высокую изменчивость по исследуемому признаку (табл. 1).

Дисперсионный анализ двухфакторного опыта позволил рассчитать вклад каждого фактора в общую изменчивость: фактор А внес 29,86%, фактор В — 5,61%, взаимодействие АВ — 39,90%, остаток (неучтенные факторы) составили 24,63%. Анализ позволил выявить значимые различия между сортообразцами по изучаемому признаку: κ -1850 от κ -2850; κ -1894 от κ -2850; κ -1978 от κ -2850, κ -2872; κ -2850 от κ -1850, κ -1978; не имеют существенных различий: κ -1043, κ -2839, κ -2365. Анализ по годам не выявил значимых различий.

При анализе семенной продуктивности мелкосемянной чечевицы отметили сортообразцы с наибольшим числом бобов на одном растении (табл. 2), в которых число семян с одного растения показало самые высокие значения — к-1850 (66,48 и 96,17 шт. соответственно), к-1964 (56,90 и 81,40 шт. соответственно). У тарелочной чечевицы значения по данному показателю снижены, наиболее высокие зафиксировали у к-3061 (56,80 и 54,40 шт. соответственно).

 Таблица 1

 Изменение электропроводности раствора с листьями растений чечевицы

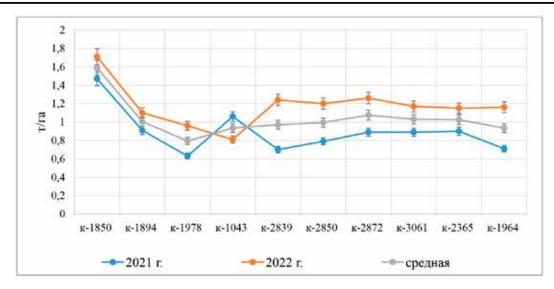
Образец (фактор А)	Удельная электропроводность раствора, μS/cm								Степень		
	Без кипячения				После кипячения				повреждения в годы исследова-		Среднее по
	I		II		I		II		ния, % (фактор В)		фактору (А)
	2021	2022	2021	2022	2021	2022	2021	2022	2021	2022	
к-1850	80	53	89	65	359	248	238	238	19,16	7,58	13,37bc
к-1894	75	60	98	90	229	310	226	324	16,20	10,33	13,27bc
к-1978	87	57	89	54	329	296	240	172	14,44	14,83	14,63c
к-2839	122	61	92	77	419	459	277	307	6,27	14,97	10,62abc
к-2872	99	54	92	57	367	293	293	184	2,00	13,32	7,66ab
к-2365	83	56	86	67	272	434	259	369	7,83	9,74	8,78abc
к-1964	90	84	85	106	282	317	255	296	9,34	15,26	12,30bc
к-1043	92	60	81	84	334	283	224	258	5,93	13,69	9,81abc
к-2850	96	90	88	103	334	288	255	274	3,90	6,90	5,40a
к-3061	105	63	97	92	287	258	229	252	11,90	14,88	13,39bc
Среднее по фактору В							9,70	12,42			
$F_{\phi a \kappa r.}(A) - 2,66^*, F_{\phi a \kappa r.}(B) - 4,33, F_{\phi a \kappa r.}(AB) - 3,42^*$											
$HCP_{05}(A) - 5,33, HCP_{05}(AB) - 7,80$											

Примечание: І – первая партия листьев; ІІ – вторая партия листьев (после 3 ч медленного увядания).

 Таблица 2

 Биометрические и биохимические показатели образцов чечевицы, 2021–2022 гг.

<u>№</u> п/п	Образец	Количество бобов на одном растении, шт.	Количество семян на одном растении, шт.	Масса семян с одного растения, г	Масса 1 тыс. семян, г	Протеин,		
мелкосемянная								
1	к-1850	66,48e	96,17e	2,46e	27,33b	30,08abc		
2	к-1894	38,30b	54,20b	1,60b	31,84de	31,72bc		
3	к-1978	49,00c	68,20c	1,62b	23,27a	32,18c		
4	к-2839	41,20b	56,70b	1,90cd	32,85e	28,44a		
5	к-2872	40,59b	58,58b	1,94d	30,86cde	29,28ab		
6	к-2365	32,41a	48,82a	0,95a	23,93a	31,74bc		
7	к-1964	56,90d	81,40d	2,03d	23,50a	31,65bc		
Среднее значение		46,41	66,30	1,78	27,65	30,73		
Ошибка средней, sx		1,05	1,51	0,04	0,73	0,79		
Коэффициент вариации, %		25,53	25,59	26,20	15,15	4,74		
F _{факт,}		126,45*	125,95*	122,09*	33,36*	3,38*		
HCP ₀₅		3,25	4,66	0,13	2,23	2,44		
тарелочная								
8	к-1043 35,59а		46,18a	2,20a	52,82a	28,84		
9	к-2850	41,00a	45,30a	2,83b	67,50b	28,89		
10	к-3061	56,80b	54,40b	3,63c	65,27b	29,74		
Среднее значение		44,46	48,63	2,89	61,86	29,16		
Ошибка средней, sx		1,41	1,49	0,09	1,97	0,89		
Коэффициент вариации, %		24,79	10,32	24,92	12,79	1,74		
$F_{\phi a \kappa \tau,}$		60,74*	11,42*	59,58*	16,21*	0,32		
HCP ₀₅		5,55	5,83	0,36	7,73	_		


Вариация значений признака «масса 1 тыс. семян» мелкосемянной чечевицы составила 23,50—32,85 г, тарелочной чечевицы 52,82—67,50 г. Выявлены значительные различия по изучаемым признакам между вариантами опыта.

Семена сортообразцов чечевицы были исследованы по биохимическому составу. У мелкосемянных образцов выявлены значительные различия, среднее содержание протеина в выборке составило 30,73%. Наибольший показатель наблюдался у к-1978 — 32,18%, наименьший — у к-2839 — 28,44%. Коэффициент вариации составил 4,74%, что указывает на слабую изменчивость изучаемого признака в выборке. При изучении тарелочной чечевицы различия были несущественными — среднее значение составило 29,16%. Коэффициент вариации еще ниже, чем у мелкосемянных образцов — 1,74%.

Результаты двухлетних исследований урожайности семян при статистической обработке показали значимые различия в вы-

бранных образцах (1,59f, 1,01d, 0,80a, 0,94b, 0,97bcd, 1,00cd, 1,07e, 1,03de, 1,03de, 0,93b — по фактору A; 0,90a, 1,18b — по фактору B). Значение средней отмечено на уровне 1,04 т/га, ошибка средней, $sx = \pm 0,03$, дисперсия составила 0,04. Коэффициент вариации в 2021 г. составил 26,64%, в 2022 г. — 19,72% и двухлетние показатели были на уровне 20,21% (рис. 1). Доля в общей изменчивости фактора A — 54,85%, фактора В — 27,48%, взаимодействия A*B — 14,38%, остаток (неучтенные факторы) — 3,29%.

При построении корреляционного матрикса биометрических и биохимических показателей чечевицы тесных взаимосвязей со степенью повреждения клеточных мембран выявлено не было (табл. 3). Однако прямые корреляционные зависимости, значимые на 1% уровне, были выявлены между количеством семян и количеством бобов на одном растении (r=0,84), массой 1 тыс. семян и массой семян с одного растения (r=0,79).

Puc.~1.~ Урожайность сортообразцов чечевицы, 2021-2022 гг. (m/га) $F_{\phi a \kappa m}\cdot (A)-129,01^*,~F_{\phi a \kappa m}\cdot (B)-581,79^*,~F_{\phi a \kappa m}\cdot (AB)-33,83^*$ $HCP_{05}(A)-0,05,~HCP_{05}(B)-0,02,~HCP_{05}(AB)-0,07$

Таблица 3 Корреляционный матрикс биометрических и биохимических показателей чечевицы, 2021–2022 гг.

	1	2	3	4	5	6	7
1	1,00						
2	0,58	1,00					
3	0,56	0,84**	1,00				
4	0,03	0,52	0,03	1,00			
5	-0,37	-0,07	-0,54	0,79**	1,00		
6	0,53	0,11	0,30	-0,52	-0,61	1,00	
7	0,08	0,54	0,59	0,22	-0,11	-0,17	1,00

Примечание: 1 — степень повреждения клеточных мембран, 2 — количество бобов на одном растении, 3 — количество семян на одном растении, 4 — масса семян с одного растения, 5 — масса 1 тыс. семян, 6 — протеин; 7 — урожайность семян.

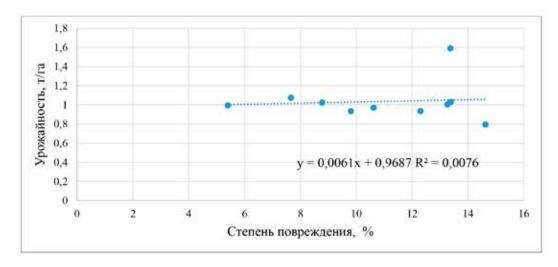


Рис. 2. Взаимосвязь урожайности семян чечевицы и степени повреждения клеточных мембран, 2021–2022 гг.

Заключение

Корреляционный анализ за два года исследований не выявил статистически значимых взаимосвязей между степенью повреждения клеточных мембран и урожайностью семян сортообразцов чечевицы (рис. 2).

В результате анализа выхода электролитов из листьев растений чечевицы определены образцы с высокой устойчивостью к засухе: российский сортообразец тарелочной чечевицы к-2850 и мелкосемянные — к-1850 (Армения) и к-2365 (Швеция).

При изучении корреляционного матрикса биометрических и биохимических показателей исследуемых сортообразцов в выявлении взаимосвязей со степенью повреждения клеточных мембран чечевицы обнаружили отсутствие статистически значимых коэффициентов. Можно предположить, что в анализ вошли сортообразцы, многие из которых не являются засухоустойчивыми.

Список литературы

1. Зайцев С.А., Волков Д.П., Носко О.С., Бычкова В.В. Чечевица как объект селекционной деятельности среды // АгроЭкоИнфо. 2022. № 1 (49). URL: http://agroecoinfo.ru/ STATYI/2022/1/st_108.pdf. DOI: 10.51419/202121108 (дата обращения: 15.05.2023).

- 2. Маракаева Т.В. Корреляция основных селекционных признаков семенной продуктивности образцов чечевицы // Вестник Омского государственного аграрного университета. 2019. № 2 (34). С. 50–56.
- 3. Новикова Н.Е. Проблемы засухоустойчивости растений в аспекте селекции гороха // Зернобобовые и крупяные культуры. 2012. № 1. С. 53–58.
- 4. Маслова Г.А., Миронов И.В., Башинская О.С., Ларина Т.В., Бабушкин Д.Д. Сравнительная оценка степени повреждения клеточных мембран образцов чечевицы мировой коллекции ВИР различного эколого-географического происхождения // АгроЭкоИнфо. 2022. № 6. DOI: 10.51419/202126623.
- 5. Kibalnik O.P., Sazonova I.A., Bochkareva Yu.V., Bychkova V.V., Semin D.S. Influence of Abiotic Stresses on Morphophysiological Characteristics and Biological Value of Grain Sorghum bicolor (L.) Moench // International Journal of Plant Biology. 2023. Vol. 14. P. 150–161. DOI: 10.3390/ijpb14010013.
- 6. Куркина Ю.Н. К вопросу о связи ксероморфизма с засухоустойчивостью бобов // Заметки ученого. 2022. № 2. С. 112-115.
- 7. Куколева С.С., Кибальник О.П., Степанченко Д.А. Оценка засухоустойчивости образцов суданской травы // Журнал сельского хозяйства и окружающей среды. 2021. № 4 (20). DOI: 10.23649/jae.2021.4.20.1.
- 8. Виноградова Е.Г. Использование сахарозы и маннита для дифференциации генотипов льна по устойчивости к осмотическому стрессу // Вестник Казанского государственного аграрного университета. 2020. Т. 15, № 3 (59). С. 10–15.
- 9. Гришенкова Н.Н., Лукаткин А.С. Определение устойчивости растительных тканей к абиотическим стрессам с использованием кондуктометрического метода // Поволжский экологический журнал. 2005. № 1. С. 3–11.