УДК 614.751-026.86(571.17)

ВОЗДЕЙСТВИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ ПОЧВЫ КАК ФАКТОР РИСКА ДЛЯ ЗДОРОВЬЯ НАСЕЛЕНИЯ (НА ПРИМЕРЕ ТЕРРИТОРИЙ УГЛЕДОБЫВАЮЩИХ РЕГИОНОВ)

¹Осипова Н.А., ²Филимоненко Е.А., ¹Язиков Е.Г.

¹ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», Томск, e-mail: osipova@tpu.ru;

 2 Институт экологической и сельскохозяйственной биологии Тюм Γ У, Тюмень, e-mail: filimonenkoea@mail.ru

В работе выполнена оценка риска хронического токсического и канцерогенного воздействия элементов почв на здоровье населения для части территории небольшого промышленного города Юга Кузбасса. В почвах, отобранных на территории небольшого промышленного города Юга Кузбасса (угледобывающий регион), определено содержание 73 элементов в 10 пробах и 29 элементов в 30 пробах методами массспектрометрии с индуктивно-связанной плазмой (МС ИСП) и инструментального нейтронно-активационого анализа (ИНАА), соответственно. Установлена геохимическая специализация почв, проявляющаяся в формировании положительных геохимических аномалий со средними коэффициентами концентрации до 26,1–1,9 единиц по содержанию Zn, Pb, Cd, Hg, Cu, Mn, Ti, Sb, As, Ge, Hf, Yb, U. Рассчитан суммарный показатель загрязнения (СПЗ), характеризующий эффект воздействия группы элементов (13 – 201 единиц, при среднем значении 64). Экологические риски здоровью населения от воздействия загрязненых почв (учтены 9 элементов почв по данным ИНАА, 26 элементов по данным МС ИСП) оценены с учетом перорального, ингаляционного и кожного путей поступления и использованием стандартных ракспозиции. Канцерогенные и неканцерогенные риски не превышают значения, принятые в качестве приемлемых. Сопоставление геохимических и эколого-гигиенических характеристик почв указывает на необходимость учета эколого-геохимических особенностей территории при интерпретации результатов оценки рисков.

Ключевые слова: канцерогенный и неканцерогенный риск, суммарный показатель загрязнения, техногенные почвы, геохимические аномалии

THE EFFECTS OF HEAVY METALS IN SOILS AS A RISK FACTOR FOR THE HEALTH OF THE POPULATION (CASE-STUDY OF COAL-MINING AREAS)

Osipova N.A., Filimonenko E.A., Yazikov E.G.

¹National Research Tomsk Polytechnic University, Tomsk, e-mail:osipova@tpu.ru ²Institute of Ecological and Agricultural Biology of Tyumen State University, Tyumen, e-mail: filimonenkoea@mail.ru

The risk assessment of chronic toxic and carcinogenic effects of soil elements on human health for part of the territory of a small industrial city of the South of Kuzbass are performed. Contents of 73 elements in 10 samples and 29 elements in 30 samples taken on the territory of the city in the coal mining region were determined in soils by inductively coupled plasma mass spectrometry (MS ICP) and instrumental neutron activation analysis (INAA). Geochemical specialization of the soils was established and it showed itself by the formation of positive geochemical anomalies with average concentration factors to 26.1- 1.9 units with respect to contents of Zn, Pb, Cd, Hg, Cu, Mn, Ti, Sb, As, Ge, Hf, Yb and U. The total pollution index characterizing the effect of a group of elements (13 – 201 units, with an average value of 64) was calculated. Ecological risks to public health caused by the impact of contaminated soils (9 soil elements were taken into account according to INAA, 26 elements according to MS ICP data) were assessed taking into account dermal, inhalation and ingestion routes of entering and using standard exposure factors. Cancerogenic and noncarcinogenic risks do not exceed the acceptable values.Comparison of geochemical and ecological-hygienic characteristics of soils makes it necessary taking ecological and geochemical features of the territory into account when interpreting the results of risk assessment.

Keywords: carcinogenic and non-carcinogenic risk, total pollution index, technogenic soils, geochemical anomalies

Опыт практических исследований в области многосредовой оценки риска для здоровья населения для ряда городов и регионов в России широко представлен в ряде публикаций, в том числе последних лет, (г. Уфа, г. Челябинск, г. Самара, и др.) [1-3]. Методологической основой подобных расчетов служит общепризнанные и востребованные отечественные руководства [4-5], нормативные документы Агентства по защите окружающей среды США [6].

Исследователи по-разному оценивают вклад риска от воздействия веществ почв, однако есть подтверждения, что в некоторых случаях, например, в сельских поселениях, в отличие от городских [7], этот вклад может быть весомым. В зонах застройки на территориях отработанных угольных шахт Китая фиксируются значительные концентрации Мп и Ni в подвижных мобильных формах, формирующие риски здоровью, а никель в экстрагируемой подвижной форме обу-

славливает канцерогенный риск для детей выше предельно допустимого уровня [8].

На основе анализа риска воздействия загрязненных почв оцениваются ущербы при эколого-экономической оценке территорий [9], конкретизируются диапазоны приемлемого содержания загрязнителей в почвах при нормировании их качества [10].

Оценка опасности загрязненных почв для человека выполнена в исследованиях загрязнения местообитания тяжелыми металлами, происходящих как от специфических источников (в металлоиндустрии [11-13], от горнодобывающих предприятий и коксовых заводов Китая [14-15], медномолибденового комбината в Армении [16]), так и для территорий городов с развитой промышленностью [17]).

Цель исследования — оценка риска токсического воздействия почв выполнена для части территории небольшого промышленного города Юга Кузбасса. Выбранный для исследования регион испытывает сочетанное воздействие нескольких факторов антропогенного характера, характерных как для всех урбанизированных территорий (промышленность, ТЭК, автотранспорт), так и специфических (развитая угледобывающая промышленность[18]). Ландшафтно-климатические особенности местности препятствуют активному рассеянию загрязняющих веществ.

Материал и методы исследования

Отбор проб почв из приповерхностного горизонта (0-10 см) на территории г. Меж-

дуреченск производился в 30 точках, равномерно распределённых по селитебной зоне города (рис. 1) согласно методическим рекомендациям по отбору проб почв [19].

Аналитические работы по определению содержаний химических элементов в почвах г. Междуреченск проведены в лабораториях Инженерной школы природных ресурсов ТПУ с использованием методов инструментального нейтронноактивационного анализа (ИНАА) и массспектрометрии с индуктивно связанной плазмой (МС-ИСП). Методом ИНАА установлены содержания 28 химических элементов в 30 образцах почв (840 элементо-определений), методом МС-ИСП — 73 химических элемента в 10 образцах почв (730 элементо-определений).

На начальном этапе математико-статистического анализа результатов исследований почв г. Междуреченска концентрации химических элементов, которые по данным лабораторно-аналитических измерений характеризуются значениями меньшими, чем аналитический предел обнаружения, были заменены на ½ соответствующего предела. Для каждого рассматриваемого химического элемента в составе почв была проверена принадлежность его максимального содержания к анализируемой выборке. В случае установления ураганных (аномально высоких) концентраций химических элементов в почвах они были заменены на содержания, отвечающие требованиям их принадлежности к анализируемой выборке.

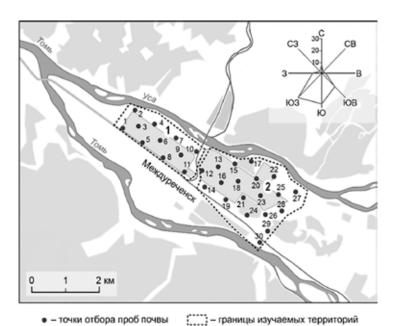


Рис. 1. Карта-схема размещения точек отбора проб почв на территории г. Междуреченска

Показателем уровня аномальности содержаний химических элементов в почвах является кларк концентрации, который рассчитывался как отношение содержания химического элемента в почве г. Междуреченск к его кларку в верхней части континентальной земной коры [20]:

$$KK_{_{3K}\Pi} = C_{_{\Pi}} / K_{_{3K}}$$

где $C_{_{\Pi}}$ – концентрация химического элемента в почве, мг/кг;

 $K_{_{3K}}$ – кларк верхней части континентальной земной коры, мг/кг [20].

На основе расчетов кларков концентраций химических элементов производился расчет суммарного показателя загрязнения, характеризующего эффект воздействия группы химических элементов [21]:

$$Z_{c_{3K}\Pi} = \Sigma KK_{3K\Pi} - (n-1),$$

где $KK_{_{^{3K}}}^{}$ – кларк концентрации химического элемента в почве, рассчитанный относительно кларка верхней части континентальной земной коры;

Оценка риска воздействия тяжелых металлов, обнаруженных в поверхностном слое почв (10 проб) выполнена для 26 элементов из 73, концентрации которых определены методом MC ИСП – Be, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Ce, W, Hg, Tl, Pb; а также для элементов, обнаруженных в поверхностном слое почв по более детальной схеме опробования (30 проб) методом ИНАА (расчет для 9 элементов Ст, Fe, Co, Zn, As, Ag, Sb, Ba, Ce из 28). Критерием отбора этих элементов послужило наличие токсикологической информации, сведений о референтных концентрациях при пероральном, ингаляционном, кожном поступлении.

Стандартные факторы экспозиции, используемые при расчете дозы, и их вариабельность при анализе неопределенности, приведены в таблице 1.

 Таблица 1

 Стандартные факторы экспозиции, используемые при расчете дозы, и их вариабельность при анализе неопределенности

Фактор экспозиции и его характеристика	Обозна- чение	Единицы измерения	Значение	Тип распре- деления**	Вариабельность** или доверительный интервал значений [22]
Фактор эмиссии пылевых частиц	PEF	-	1,36*109		
Объем поступаемого воздуха в сутки в организм взрослого человека	$R_{_{\rm ИНГ}}$	м ³ /день	20		
Суточное пероральное поступление почвы в организм взрослого человека	V	мг/день	100		
Площадь кожи, подвергшейся воздействию	SA	см ²	5700		
Фактор адгезии	SL	мг/см ² сут.	0,07		
Фактор кожной адсорбции	ABS	-	0,001		
Частота воздействия	EF	дней/год	350	Триангулярное	180-365
Продолжительность воздействия	ED	лет	30	Логнормальное	19-43
Масса тела взрослого человека	BW	КГ	70	Логнормальное	55-80
Период осреднения экспозиции	AT	лет	30 (70*)	Точечное	30 (70*)
Концентрация элемента в почве	Сэл	мг/кг	Сэл	Нормальное	C _{эл.} ±SD

SD – стандартное отклонение;

^{* –} значение для канцерогенов

^{** –} тип распределения и вариабельность значений указаны для тех факторов экспозиции, которые используются в анализе неопределенностей

Для оценки неканцерогенных рисков применены пороговые модели, основанные на использовании референтных концентраций. Данная модель, в отличие от линейноэкспоненциальных, не зависит от такой характеристики загрязняющего вещества, как класс опасности, и реализуется с помощью коэффициента опасности. Индекс опасности НІ является суммацией коэффициентов опасности по отдельным элементам и по различным путям поступления.

$$\begin{split} \mathbf{HI}_{_{06\text{III}}} &= \mathbf{HI}_{_{\text{ИНГ}}} + \mathbf{HI}_{_{\text{Дерм}}} + \mathbf{HI}_{_{\text{Пер}}} \\ \mathbf{HI}_{_{\text{ИНГ}}} &= \Sigma \mathbf{KO}_{_{\text{ИНГ}}} \\ \mathbf{HI}_{_{\text{Дерм}}} &= \Sigma \mathbf{KO}_{_{\text{Дерм}}} \\ \mathbf{HI}_{_{\text{Пер}}} &= \Sigma \mathbf{KO}_{_{\text{пер}}} \end{split}$$

Суммарный индекс опасности по каждому элементу рассчитывается как сумма коэффициентов опасности перорального (KO_{nen}) , ингаляционного $(KO_{инг})$ и дермального воздействия (КО воздействия для каждого элемента:

$$KO = KO_{\text{пер.}} + KO_{\text{инг.}} + KO_{\text{дерм.}}$$

Коэффициент опасности перорального воздействия КО пер. оценивался как отношение среднесуточной дозы (LADD_{пер}) к референтной дозе при пероральном поступлении (RfD_{nen}):

$$KO_{nep} = LADD_{nep} / RfD_{nep}$$

Среднесуточная доза при пероральном поступлении (LADD_{пер}) каждого элемента вместе с почвой рассчитывалась:

$$LADD_{nep} = \frac{C_{_{\mathfrak{IM}}} \times V \times ED \times EF}{BW \times AT \times 365} \times 10^{-6}$$

где $LADD_{nep}$ — среднесуточная доза при пероральном поступлении в течение жизни для неканцерогенного воздействия, $M\Gamma/(K\Gamma \times CYTKИ);$

Коэффициент опасности кожного воздействия $KO_{_{\!\!\!\text{дерм}}}$ оценивался как отношение среднесуточной дозы к референтной дозе при поступлении через кожу (RfD_{перм}):

$$KO_{\text{дерм}} = LADD_{\text{дерм}} / RfD_{\text{дерм}}$$

Среднесуточная доза при поступлении каждого элемента вместе с почвой через кожу $LADD_{nepm}$, мг/(кг × сутки), рассчитывалась:

$$LADD_{_{\text{Дерм}}} = \frac{C_{_{_{9,II}}} \times SA \times SL \times ABS \times EF \times ED}{BW \times AT} \times 10^{-6}$$

Коэффициент опасности ингаляционного хронического воздействия КО инг рассчитывался, в первом случае, как отношение среднесуточной дозы $LADD_{\mbox{\tiny HHI}}$ к референтной дозе при ингаляционном поступлении (RfD_{UHI}) :

$$KO_{\text{MHT}(I)} = LADD_{\text{MHT}(I)} / RfD_{\text{MHT}}$$

Среднесуточная доза при ингаляционном поступлении каждого элемента вместе с почвой рассчитывалась:

$$LADD_{_{\text{ИНГ}(I)}} = \frac{C_{_{\mathfrak{I}\!\!A}} \times R_{_{\text{ИНГ}}} \times EF \times ED}{PEF \times BW \times AT \times 365}$$

По второму способу концентрации элементов в почве (С эл) были пересчитаны на их концентрации во вдыхаемом воздухе (С, , с использованием модели переноса загрязнителя из почвы во вдыхаемый воздух (расчет переноса загрязнителей из почвы в атмосферный воздух, как среды, непосредственно контактирующей с человеком) [23], предлагаемой в программном комплексе «Risk Assistant» [24] и реализуемой, например, в [12]:

$$C_{\text{инг}} = C_{\text{пыли}} \cdot R \cdot f \cdot C_{\text{эл}}$$

 $C_{_{\rm ИНГ}}=C_{_{\Pi \rm ЫЛИ}}\cdot R\cdot f\cdot C_{_{9Л},}$ где $C_{_{\Pi \rm ЫЛИ}}=7.5\cdot 10^{-6}\,{\rm MF/M^3}$ R- вдыхаемая фракция пыли, 73% = 0.73 f – загрязненная часть пыли, 1% = 0.01

Коэффициент опасности ингаляционного воздействия КО инг. оценивался как отношение ингаляционной концентрации (С инг) к референтной концентрации при ингаляционном хроническом воздействии (RfC_{иш}):

$$KO_{\text{uhr}(II)} = C_{\text{uhr}} / RfC_{\text{uhr}}$$

Канцерогенный риск рассчитывался:

$$R_{_{\text{инд.канц}}} = LADD_{_{(пер)}} \times SF$$

где SF - фактор канцерогенного потенциала, $M\Gamma/(K\Gamma \times CYT.)^{-1}$.

Факторы экспозиции, входящие во все расчетные формулы, по смыслу являются неопределенными и имеют доверительный интервал значений, в пределах которого эти параметры могут варьироваться [25]. При анализе неопределенностей в расчетах среднесуточных доз канцерогенов методом Монте-Карло, основанном на генерации случайных чисел [26-27], рассчитывалась вероятность (Р) реализации доз, при которых канцерогенный риск превышает приемлемый уровень.

Результаты исследования и их обсуждение

Результаты аналитических определений химических элементов в почвах г. Междуреченск методами ИНАА и МС-ИСП имеют высокую степень сходимости для содержаний Sc, Cr, Fe, Co, Zn, Rb, Sr, Ag, Ba, Ta. Статистически значимые различия между аналитическими результатами двух ИНАА и МС-ИСП установлены для средних концентраций Na, Ca, As, Eu, Tb, Lu, а высоко значимые различия – для Br, Sb, Cs, La, Ce, Nd, Sm, Yb, Hf, Au, Th, U (рисунок 2). Для перечисленных элементов, исключая Br, As, Cs и Sc, содержания в почвах г. Междуреченск, определённые по данным ИНАА, характеризуются более высокими значениями. Это, вероятно, обусловлено различиями в методиках подготовки образцов к аналитическим исследованиям: разложение проб для определения по методу МС-ИСП и отсутствие химической подготовки для определения по методу ИНАА. При этом в процедуре оценки риска не учитываются те элементы, для которых различия существенны – Cs, La, Ce, Nd, Sm, Yb, Hf, Au, Th, U. Из тех элементов, которые учитываются в расчетах риска – статистически значимые различия есть для As, Br, Sb.

Уровни содержания большинства рассматриваемых химических элементов в почвах г. Междуреченск ниже или соответствуют средним концентрациям элементов в верхней части континентальной земной коры [20]. Содержания некоторых тяжелых металлов (Zn, Pb, Cd, Hg, Cu, Mn, Ti), полуметаллов (Sb, As, Ge), редких и редкоземельных (Hf, Yb), радиоактивных (U) элементов в почвах г. Междуреченска формируют положительные геохимические аномалии со средними коэффициентами концентрации до 26,1–1,9 единиц.

Количественной мерой выявленной геохимической специализации почв является суммарный показатель загрязнения, характеризующий эффект воздействия группы элементов [21]. Значения данного показателя для почв г. Междуреченск изменяются от 13 до 201 единиц, при среднем значении 64, которое соответствует высокой степени загрязнения территории и опасному уровню заболеваемости населения согласно [21].

Элементный состав почв г. Междуреченск сформировался в результате совместного влияния таких факторов, как строительство города на насыпных грунтах и многолетнее загрязнение почв. Для засыпки болотистой местности и строительства объектов промышленного и гражданского назначения в г. Междуреченск были использованы вскрышные породы с близ расположенных угольных разрезов. Наибольшие концентрации Cu, V, Cr, Sn, Ni и Со во вскрышных породах угольных предприятий Кузбасса [28] соответствуют средним концентрациям в верхней части континентальной земной коры [20]. Тогда как концентрации Hg, Sb, Mo, Pb, Cd, Mn, Zn во вскрышных породах до 1.8 - 20.8 раз превосходят указанный критериальный уровень, что находит прямое отражение в установленной геохимической специализации почв г. Междуреченск.

Накопление загрязняющих веществ в почвах происходит за счет депонирования поллютантов из атмосферного воздуха. При длительных сроках воздействия аэротехногенных источников концентрации элементов в почвогрунтах пропорциональны нагрузкам элементов, поступающих на подстилающие поверхности из атмосферы.

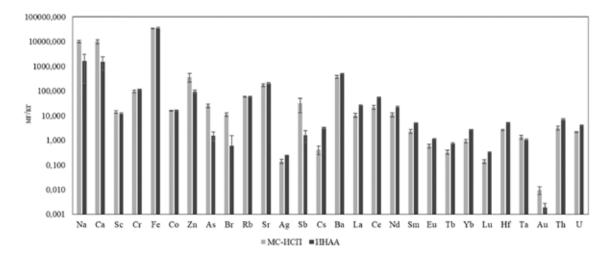


Рис. 2. Средние концентрации химических элементов в почвах г. Междуреченск по данным аналитических определений методами масс-спектрометрии с индуктивно связанной плазмой (МС-ИСП) и инструментальным нейтронно-активационным анализом (ИНАА)

Основными источниками, формирующими загрязнение атмосферного воздуха, являются промышленные объекты угледобычи и углепереработки, расположенные вокруг г. Междуреченск, а также многочисленные котельные, локализованные в пределах жилых зон города.

При добыче угля вблизи г. Междуреченск в атмосферный воздух выбрасывается значительное количество угольной пыли -3300 тонн ежегодно [29]. По мере распространения аэротехногенных шлейфов от объектов по добыче и переработке угля частицы угольной пыли осаждаются из воздуха на депонирующие природные среды. Таким образом, геохимические особенности загрязнения почв г. Междуреченск, формируемые под влиянием добычи угля, соответствуют геохимической специализации добываемых углей. Известно, что угли, добываемые на разрезах вблизи г. Междуреченск (Ольжерасский, Красногорский, Сибиргинский, Междуреченский), в 2 и более раз обогащены Mn, Nb, Be, Zr, Mo, Y, As, Sr, Ni, Pb, Cu, Li, Sn, Ti, Zn, P, Ba, Hf, Ga, Tb, V, Co, Lu, Ta, Sm, Eu относительно среднего состава каменных углей [30, 31]. Другим основным источником поступления химических элементов в почвы г. Междуреченск является депонирование пылевых выбросов местных угольных котельных. Вблизи теплоэлектростанции и локальных котельных, использующих кузбасские угли, атмосферные пылеаэрозоли в повышенных количествах содержат Hg, Zn, Ni, Mo, Co, Ba, Sr, Cd, As, Sb, Pb, V, U и Fe [32, 33].

В таблице 2 приведены рассчитанные значения всех показателей риска по результатам определения элементов методом МС ИСП, в таблице 3 — по результатам определения методом ИНАА.

По вкладу различных путей поступления в суммарное значение коэффициента опасности КОпер. (0,51) > КОдерм.(0,05) > КОинг.(0,0174); HI =0,57.

Вклад ингаляционного пути поступления существенно возрастает при расчете ингаляционной составляющей с использованием модели переноса загрязнителя из почвы во вдыхаемый воздух, и этот путь поступления становится доминирующим, преобладающим в формировании неканцерогенного риска: КО инг. (1,72) > КО пер. (0,51) > КО дерм. (0,05). При этом значение общего коэффициента опасности превышает 1 (HI = 2,3), что соответствует опасному уровню риска.

Вклады ингаляционного, перорального и кожного путей поступления составляют,

соответственно, по результатам определения элементов методом МС ИСП, при первом (3,0; 89,1; 7,9%) и втором (76,0; 23,0; 6,0,%) способах расчета, и по данным метода ИНАА -1,0; 94,0; 5,0; и (45,0; 52,0; 3,0,%).

По уменьшению коэффициента опасности перорального воздействия элементы ($KO > 10^{-3}$) образуют следующий ряд: KO гер (0,15) > As (0, 11) > Sb (0,11) > Al (0,04) > Cr (0,03) > Pb (0,02) > Mn (0,008) > V (0,007) > Ba (0,007) > Tl (0,006) > Cu (0,004)> Ni (0,003) > Zn (0,002) > Cd (0,001).

По уменьшению коэффициента опасности дермального воздействия (КО $> 10^{-3}$) элементы образуют следующий ряд: КО_{дерм} Sb (0,021)>Cr (0,009) > V (0,008)> Al (0,002) > Mn (0,002).

По уменьшению коэффициента опасности ингаляционного хронического воздействия (КО > 10^{-3}) элементы образуют следующий ряд при расчете по первому способу: КО ми (0,011) > Al (0,005); и по второму: Mn (0,85) > Al (0,35)> Cu (0,15)> V(0,08) > Cr, As (0,05)> Co, Ni, Ba (0,04) > Zn(0,02).

Последний ряд представляет особый интерес, так как при этом подходе оцененный КО уровень опасности превышает 1. Заметим, однако, что оценки характеризуют лишь вклад почвенного загрязнения в суммарный риск при многосредовом воздействии веществ на человека.

При сохранении этих же пропорций по вкладу каждого элемента в ингаляционный риск, мы рассчитали ориентировочно приемлемые содержания этих элементов в почвах, при которых формируемый уровень неканцерогенного риска не будет превышать 1 (КО инг. менее или равно 1) (таблица 4).

Необходимо отметить, что в этот перечень входят лишь Zn, Cu, Mn, As, отмеченные выше среди 13 элементов с коэффициентами концентрации относительно кларка в земной коре 26,1–1,9 единиц, что еще раз подчеркивает необходимость сочетания геохимического и эколого-гигиенического подходов при оценке опасности почвенного загрязнения.

Если сравнить результаты по тем элементам, которые определяются обоими методами – Cr, Fe, Co, Zn, As, Ag, Cd, Sn, Sb, Ba, Ce, – то можно полагать, что при статистически значимых различиях в концентрациях ряда элементов наблюдаются сопоставимые значения на уровне оценки НІ (КО инг. = 0,21 и 0,22, КО пер. = 0,24 и 0,41, КО дерм. = 0,014 и 0,032 (по идентичному перечню элементов).

Таблица 2

Риски воздействия веществ почвы (по данным МС-ИСП)

		ингаляционное воздействие		,	пероральное воздействие	воздействие	дермальное воздействие	воздействие	IH	H
Метод 1	л 1		Метод 2	л 2	1 1			[метод	метод
LADDинг, мг/кг*день	КОинг		$ m C$ инг, $ m Hr/M^3$	КО инг	LADD per, Mr/кг*день	KO per	LADD derm, mr/кг*день	KO derm		2
$3,7 \cdot 10^{-10} \pm 2,3 \cdot 10^{-11}$	_		$1,0.10^{-7}\pm6,4.10^{-9}$	$5,0\cdot10^{-3}\pm3,2\cdot10^{-4}$	$2,5\cdot10^{-6}\pm1,6\cdot10^{-7}$	$1,3\cdot 10^{-3}\pm 1,\cdot 10^{-4}$	$1,\!0\!\cdot\!10^{\text{-}8}\!\!\pm\!\!6,\!4\!\cdot\!10^{\text{-}10}$	_	$ 1,3\cdot10^{-3} 6,3\cdot10^{-3}$	$6,3.10^{-3}$
$Mg 1,1 \cdot 10^8 \pm 1,7 \cdot 10^{-9} -$	_		$3,0.10^{-4}\pm4,7.10^{-5}$	$\cdot 10^{-5} \left \ 3,0 \cdot 10^{3} \pm 4,7 \cdot 10^{4} \right \ 7,6 \cdot 10^{3} \pm 1,2 \cdot 10^{3}$		$6.9 \cdot 10^{4} \pm 1.1 \cdot 10^{4}$	$3,0\cdot10^{-5}\pm4,7\cdot10^{-6}$	-	$ 6.9 \cdot 10^{-4} 3.7 \cdot 10^{-3}$	$3,7.10^{-3}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$4.5 \cdot 10^{-3} \pm 6.2 \cdot 10^{-3}$		$1,8\cdot 10^{-3}\pm 2,4\cdot 10^{-4}$	$1,8 \cdot 10^{\cdot 3} \pm 2,4 \cdot 10^{-4} 3,5 \cdot 10^{-1} \pm 4,8 \cdot 10^{-2} 4,4 \cdot 10^{-2} \pm 6,1 \cdot 10^{\cdot 3}$	$4,4\cdot10^{-2}\pm6,1\cdot10^{-3}$	$4,4\cdot10^{-2}\pm6,7\cdot10^{-3}$	$1,8\cdot 10^{-4}\pm 2,4\cdot 10^{-5}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$5,0\cdot10^{-2}$	$4,0.10^{-1}$
7,9·10-7±2,1·10-8	ı		$2,1\cdot 10^{-4}\pm 5,8\cdot 10^{-6}$ $7,1\cdot 10^{-3}\pm 1,9\cdot 10^{-4}$	$7,1\cdot10^{-3}\pm1,9\cdot10^{-4}$	$5,4\cdot10^{-3}\pm1,5\cdot10^{-4}$ $1,3\cdot10^{-3}\pm3,6\cdot10^{-5}$	$1,3\cdot10^{-3}\pm3,6\cdot10^{-5}$	$2,1\cdot10^{-5}\pm5,8E-07$	ı	$1,3\cdot10^{-3}$ $8,5\cdot10^{-3}$	$8,5.10^{-3}$
$2,1\cdot 10^{-8}\pm 6,8\cdot 10^{-10}$	I		$5.8 \cdot 10^{-6} \pm 1.9 \cdot 10^{-7}$	$8,3\cdot 10^{2} \pm 2,7\cdot 10^{3} \; \big \; 1,5\cdot 10^{4} \pm 4,6\cdot 10^{6} \; \big \; 7,3\cdot 10^{3} \pm 2,4\cdot 10^{3}$	$1,5.10^{4}\pm4,6.10^{-6}$	$7,3.10^{-3}\pm2,4.10^{-3}$	$5.8 \cdot 10^{-7} \pm 1.9 \cdot 10^{-8}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 1,6.10^{-2} $	$9,8.10^{2}$
$\left \begin{array}{cc}1,9\cdot10^{-8}\pm2,4\cdot10^{-9}\end{array}\right $ 6,8·10 ⁻⁴ ±8,5·10 ⁻⁵	$6.8 \cdot 10^{-4} \pm 8.5 \cdot 10^{-5}$	2	$5,3\cdot10^{-6}\pm6,6\cdot10^{-7}$	$5,3\cdot 10^{2} \pm 6,6\cdot 10^{3} \mid 1,3\cdot 10^{4} \pm 1,7\cdot 10^{5} \mid 2,6\cdot 10^{-2} \pm 3,3 E-03$	$1,3.10^4\pm1,7.10^5$	$2,6.10^{-2}\pm3,3E-03$	$5,3\cdot10^{-7}\pm6,6\cdot10^{-8}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 3,6.10^{-2} $	$8,8.10^{-2}$
Mn $1,6\cdot10^{-7}\pm8,4\cdot10^{-9}$ $1,1\cdot10^{-2}\pm5,9\cdot10^{-4}$	$1,1\cdot10^{-2}\pm5,9\cdot10^{-3}$	-	4,2·10-5±2,3·10-6	$8.5 \cdot 10^{1} \pm 4.5 \cdot 10^{2} \mid 1,1 \cdot 10^{-3} \pm 5,7 \cdot 10^{-5} \mid 7,6 \cdot 10^{-3} \pm 5,5 \cdot 10^{-4}$	$1,1\cdot 10^{-3}\pm 5,7\cdot 10^{-5}$	$7,6.10^{-3}\pm5,5.10^{-4}$	$4,2\cdot10^{-6}\pm2,3\cdot10^{-7}$	$2,3\cdot 10^{-3}\pm 7,3\cdot 10^{-4}$ $2,1\cdot 10^{-2}$ $8,6\cdot 10^{-1}$	$2,1\cdot 10^{-2}$	$8,6.10^{-1}$
$6,7\cdot 10^{-6}\pm 2,5\cdot 10^{-7}$	ı		1,8·10-3±6,7·10-5	$\cdot 10^{-5} 3.0 \cdot 10^{-3} \pm 1, 1 \cdot 10^{-4} 4.6 \cdot 10^{-2} \pm 1, 7 \cdot 10^{-3}$	$4,6\cdot10^{-2}\pm1,7\cdot10^{-3}$	$1,5\cdot10^{-1}\pm5,6\cdot10^{-3}$	$1,8\cdot 10^{-4}\pm 6,7\cdot 10^{-6}$	ı	$1,5\cdot10^{-1}$ $1,5\cdot10^{-1}$	$1,5.10^{-1}$
$3,2\cdot 10^{-9}\pm 9,1\cdot 10^{-11}$ $5,6\cdot 10^{-4}\pm 1,6\cdot 10^{-5}$	$5,6\cdot10^{4}\pm1,6\cdot10^{-5}$		$8,6\cdot10^{-7}\pm2,5\cdot10^{-8}$	$8.6 \cdot 10^{7} \pm 2.5 \cdot 10^{8} \left 4.3 \cdot 10^{2} \pm 1.2 \cdot 10^{3} \right 2.2 \cdot 10^{5} \pm 6.2 \cdot 10^{7} \left 1.1 \cdot 10^{3} \pm 3.1 \cdot 10^{5} \right $	$2,2\cdot10^{-5}\pm6,2\cdot10^{-7}$	$1,1\cdot 10^{-3}\pm 3,1\cdot 10^{-5}$	$8,6\cdot10^{-8}\pm2,5\cdot10^{-9}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1,6.10^{-3}$	4,4.10-2
$7,9\cdot10^{-9}\pm3,2\cdot10^{-10}$ $3,8\cdot10^{-7}\pm1,6\cdot10^{-8}$	$3.8 \cdot 10^{\text{-7}} \!\pm\! 1,6 \cdot 10^{\text{-8}}$			$2.1 \cdot 10^{-6} \pm 8.8 \cdot 10^{-8} \left \ 4.3 \cdot 10^{-2} \pm 1.8 \cdot 10^{-3} \right 5.4 \cdot 10^{-5} \pm 2.2 \cdot 10^{-6} \left \ 2.7 \cdot 10^{-3} \pm 1.1 \cdot 10^{-4} \right $	$5,4\cdot10^{-5}\pm2,2\cdot10^{-6}$	$2,7\cdot 10^{-3}\pm 1,1\cdot 10^{-4}$	$2,1\cdot 10^{-7} \pm 8,8\cdot 10^{-9}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2,7 \cdot 10^{-3}$	$4,6.10^{2}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2,7 \cdot 10^{-7} \pm 6,2 \cdot 10^{-8}$		$3,0\cdot10^{-6}\pm6,8\cdot10^{-7}$	$1,5\cdot 10^{1} \pm 3,4\cdot 10^{2} \mid 7,4\cdot 10^{\cdot 5} \pm 1,7\cdot 10^{\cdot 5} \mid 3,9\cdot 10^{\cdot 3} \pm 9,6\cdot 10^{\cdot 4}$	7,4·10-5±1,7·10-5	$3,9\cdot10^{-3}\pm9,6\cdot10^{-4}$	$3,\!0\!\cdot\!10^{\text{-7}}\!\!\pm\!6,\!8\!\cdot\!10^{\text{-8}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 3,9\cdot10^{-3} $	$1,5 \cdot 10^{-1}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2,5\cdot10^{-7}\pm9,3\cdot10^{-8}$		$2,0.10^{-5}\pm7,6.10^{-6}$	$2.2 \cdot 10^{2} \pm 8.4 \cdot 10^{-3} \mid 5.0 \cdot 10^{4} \pm 1.9 \cdot 10^{4} \mid 1.7 \cdot 10^{-3} \pm 6.3 \cdot 10^{4}$	$5,0\cdot10^{-4}\pm1,9\cdot10^{-4}$	$1,7 \cdot 10^{-3} \pm 6,3 \cdot 10^{-4}$	$2,\!0\!\cdot\!10^{\text{-}6}\!\!\pm\!7,\!6\!\cdot\!10^{\text{-}7}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1,7.10^{-3}$	$2,4\cdot10^{-2}$
$3.0 \cdot 10^{-9} \pm 6.4 \cdot 10^{-11}$	1		$8,2\cdot10^{-7}\pm1,7\cdot10^{-8}$	$8.2 \cdot 10^{-7} \pm 1, 7 \cdot 10^{-8} \mid 2.0 \cdot 10^{-5} \pm 4, 3 \cdot 10^{-7} \mid 2.0 \cdot 10^{-5} \pm 4, 3 \cdot 07$	$2,0.10^{-5}\pm4,3E-07$		$8,1\!\cdot\!10^{-8}\!\!\pm\!1,7\!\cdot\!10^{-9}$	-	ı	$2,0\cdot10^{-5}$
$ \left \ 5,1\cdot 10^{\cdot 9} \pm 8,7\cdot 10^{\cdot 10} \ \right \ 1,7\cdot 10^{\cdot 5} \pm 2,9\cdot 10^{\cdot 6} $	$1,7.10^{5}\pm2,9.10^{6}$		$1,4.10^{-6}\pm2,4.10^{-7}$	$1,4\cdot 10^{\circ 6} \pm 2,4\cdot 10^{\circ 7} \left \ 4,6\cdot 10^{\circ 2} \pm 7,9\cdot 10^{\circ 3} \right \ 3,4\cdot 10^{\circ 5} \pm 5,9\cdot 10^{\circ 6} \left \ 1,1E-01\pm 2,0\cdot 10^{\circ } \right $	3,4.10-5±5,9.10-6	$1,1E-01\pm 2,0\cdot 10^{-2}$	$1,4\!\cdot\!10^{\text{-7}}\!\!\pm\!2,\!4\!\cdot\!10^{\text{-8}}$	$\left \ 1,1\cdot 10^{-3} \pm 3,5\cdot 10^{-4} \ \right 1,2\cdot 10^{-1} \ \ 1,6\cdot 10^{-1}$	$1,2.10^{-1}$	$1,6.10^{1}$
$4.8 \cdot 10^{-10} \pm 1.0 \cdot 10^{-10}$	I		$1,3\cdot 10^{-7}\pm 2,8\cdot 10^{-8}$	$1, 3 \cdot 10^{-7} \pm 2, 8 \cdot 10^{-8} \ \left \ 1, 6 \cdot 10^{-3} \pm 3, 5 \cdot 10^{-4} \ \left \ 3, 2 \cdot 10^{6} \pm 7, 0 E - 07 \right \ 6, 5 \cdot 10^{4} \pm 1, 4 \cdot 10^{-4} \right $	3,2·10 ⁻⁶ ±7,0E-07	$6.5 \cdot 10^4 \pm 1.4 \cdot 10^4$	$1,\!3\!\cdot\!10^{\text{-8}}\!\!\pm\!2,\!8\!\cdot\!10^{\text{-9}}$	Ι	$6.5 \cdot 10^{-4} \ 2.3 \cdot 10^{-3}$	$2,3.10^{-3}$
Mo $2,2\cdot10^{-10}\pm7,5\cdot10^{-12}$ $4,4\cdot10^{-8}\pm1,5\cdot10^{-9}$	$4,4\cdot10^{-8}\pm1,5\cdot10^{-8}$	6	$5.9 \cdot 10^{-8} \pm 2.0 \cdot 10^{-9}$	$5.9 \cdot 10^{-8} \pm 2.0 \cdot 10^{-9} \left 4.9 \cdot 10^{-6} \pm 1.7 \cdot 10^{-7} \right 1.5 \cdot 10^{-6} \pm 5.1 \cdot 10^{-8} \left 2.9 \cdot 10^{-4} \pm 1.0 \cdot 10^{-5} \right 1.5 \cdot 10^{-6} \pm 5.1 \cdot 10^{-8} \left 2.9 \cdot 10^{-4} \pm 1.0 \cdot 10^{-5} \right 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.5 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.5 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6} \pm 1.0 \cdot 10^{-6} \right 1.0 \cdot 10^{-6} \left 1.0 \cdot 10^{-6}$	$1,5\cdot 10^{-6}\pm 5,1\cdot 10^{-8}$		$5.9\!\cdot\!10^{\text{-}9}\!\pm\!2.0\!\cdot\!10^{\text{-}10}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3,0.10^{-4}$	$3,0.10^{-4}$
Ag $2.9 \cdot 10^{-11} \pm 5.6 \cdot 10^{-12}$ $5.7 \cdot 10^{-9} \pm 1.1 \cdot 10^{-9}$		9	-	$3.9 \cdot 10^{-7} \pm 7.7 \cdot 10^{-8}$	$1,9\cdot 10^{-7}\pm 3,8\cdot 10^{-8}$	3,9.10-5±1,1.10-5	$7,7\cdot 10^{\text{-}10} \pm 1,5\cdot 10^{\text{-}10}$	$7.7 \cdot 10^{9} \pm 1.5 \cdot 10^{9} \left \ 3.9 \cdot 10^{7} \pm 7.7 \cdot 10^{8} \right \ 1.9 \cdot 10^{7} \pm 3.8 \cdot 10^{8} \left \ 3.9 \cdot 10^{5} \pm 1.1 \cdot 10^{5} \right \ 7.7 \cdot 10^{-10} \pm 1.5 \cdot 10^{-10} \left \ 8.6 \cdot 10^{7} \pm 2.7 \cdot 10^{-7} \right \ 4.0 \cdot 10^{5} \right \ 4.0 \cdot 10^{5} = 1.0 \cdot 10^{-10} \left \ 8.6 \cdot 10^{-10} \pm 1.5 \cdot 10^{-10} \right \ 8.0 \cdot 10^{-10} = 1.0 \cdot 10^{-10} = $	$ 4,0\cdot10^{-5} $	$4,0.10^{-5}$
Cd $\left 1,0\cdot 10^{-10}\pm 2,5\cdot 10^{-11} \right 1,0\cdot 10^{-7}\pm 2,5\cdot 10^{-8}$	$1,0.10^{-7}\pm2,5.10$	8-	$2,7\cdot 10^{-8}\pm 6,7\cdot 10^{-9}$	$1,\!4\cdot 10^{3}\!\pm\!3,\!3\cdot 10^{4} \mid 6,\!9\cdot 10^{7}\!\pm\!1,\!7\cdot 10^{7} \mid 1,\!4\cdot 10^{-3}\!\pm\!3,\!3\cdot 10^{4}$	$6.9 \cdot 10^{-7} \pm 1.7 \cdot 10^{-7}$	$1,4.10^{-3}\pm3,3.10^{-4}$	$2,\!7\!\cdot\!10^{\!-\!9}\!\!\pm\!\!6,\!7\!\cdot\!10^{\!-\!10}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ 1,6.10^{-3} $	$3,0.10^{-3}$
$5,7\cdot 10^{-10}\pm 1,5\cdot 10^{-10}$	ı		$1,6.10^{-7}\pm4,1.10^{-8}$	$\cdot 10^{\cdot 8} \left \ 7.8 \cdot 10^{\circ} \pm 2.1 \cdot 10^{\cdot 6} \right \ 3.9 \cdot 10^{\circ} \pm 1.0 \cdot 10^{\circ} \left \ 6.5 \cdot 10^{\circ} \pm 8.0 \cdot 10^{\circ} \right $	3,9·10-6±1,0·10-6	$6.5 \cdot 10^{-6} \pm 8.0 \cdot 10^{-6}$	$1,\!6\!\cdot\!10^{\text{-8}}\!\!\pm\!4,\!1\!\cdot\!10^{\text{-9}}$	1	$ 6,5\cdot10^{-6} 1,4\cdot10^{-5}$	$1,4.10^{-5}$
$ \left \begin{array}{c} 6.3 \cdot 10^{-9} \pm 3.7 \cdot 10^{-9} \end{array} \right \ 1.6 \cdot 10^{-5} \pm 9.3 \cdot 10^{-6} $	$1,6.10^{-5}\pm9,3.1$	0^{-6}	$1,7 \cdot 10^{-6} \pm 1,0 \cdot 10^{-6}$	$1, 7 \cdot 10^{\circ} \pm 1, 0 \cdot 10^{\circ} \left \right. \left. 4, 3 \cdot 10^{\cdot 3} \pm 2, 5 \cdot 10^{\cdot 3} \left \right. \left. \left. 4, 3 \cdot 10^{\cdot 5} \pm 2, 5 \cdot 10^{\cdot 5} \right \right. \left. 1, 1 \cdot 10^{-1} \pm 6, 3 \cdot 10^{\cdot 2} \right. \right.$	4,3·10 ⁻⁵ ±2,5·10 ⁻⁵	$1,1\cdot 10^{-1}\pm 6,3\cdot 10^{-2}$	$1,7\!\cdot\!10^{\text{-7}}\!\!\pm\!1,\!0\!\cdot\!10^{\text{-7}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1,3 \cdot 10^{-1}$	$1,3.10^{-1}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5,2.104±6,9.1	0-5	$2,0\cdot10^{-5}\pm2,7\cdot10^{-6}$	$\cdot 10^{-6} \left \ 4,0 \cdot 10^{2} \pm 5,4 \cdot 10^{-3} \ \right \ 5,0 \cdot 10^{-4} \pm 6,7 \cdot 10^{-5} \ \right \ 7,2 \cdot 10^{-3} \pm 9,6 \cdot 10^{-4}$	$5,0\cdot10^{-4}\pm6,7\cdot10^{-5}$	$7,2\cdot10^{-3}\pm9,6\cdot10^{-4}$	$2.0 \cdot 10^{-6} \pm 2.7 \cdot 10^{-7}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$8,1\cdot 10^{-3}$	$4,8.10^{-2}$
$ 4,4\cdot10^{-9}\pm8,3\cdot10^{-10} $	ı		$1,2\cdot 10^{-6}\pm 2,3\cdot 10^{-7}$	$1,2\cdot 10^{-6} \pm 2,3\cdot 10^{-7} \mid 6,0\cdot 10^{-3} \pm 1,1\cdot 10^{-3} \mid 3,0\cdot 10^{-5} \pm 5,7\cdot 10^{-6}$	$3,0\cdot10^{-5}\pm5,7\cdot10^{-6}$	I	$1,2\cdot 10^{\text{-7}} \pm 2,3\cdot 10^{\text{-8}}$	ı	ı	$6.0\!\cdot\!10^{\text{-}3}$
		ı								

Окончание табл. 2

***	НІ Метод	2	$7,1 \cdot 10^{-4}$	5,2.104	$6,3\cdot10^{-3}$	$3,0.10^{-2}$	2,3
***	НІ НІ метод метод	1	$ 7,1\cdot10^{-4} 7,1\cdot10^{-4}$	$5.0 \cdot 10^{-4}$	$6,2\cdot10^{-3}$ $6,3\cdot10^{-3}$	$2,4 \cdot 10^{-2}$	$5,7 \cdot 10^{-1}$
,	зоздеиствие	KO derm	_	2,7·10-5±8,6·10-6	Ι	$6.2 \cdot 10^{-4} \pm 2.0 \cdot 10^{-4}$	0.045 ± 0.014 $5.7\cdot10^{-1}$ 2,3
	дермальное воздеиствие	LADD derm, Mr/кг*день	$7,\!1\!\cdot\!10^{\!-\!9}\!\pm\!3,\!9\!\cdot\!10^{\!-\!10}$	$0^9 \left[1,9\cdot 10^{5}\pm 5,3\cdot 10^{6} \right. \left. 1,4\cdot 10^{7}\pm 4,0\cdot 10^{8} \right. \left. 4,7\cdot 10^{4}\pm 1,3\cdot 10^{4} \right. \left. 5,7\cdot 10^{\cdot 10}\pm 1,6\cdot 10^{\cdot 10} \right. \left. \left[2,7\cdot 10^{\cdot 5}\pm 8,6\cdot 10^{\cdot 6} \right. \left 5,0\cdot 10^{4} \right. \right. \left 5,2\cdot 10^{4}\right. \left 5,2\cdot 10^{4}\right$	$1,7 \cdot 10^{-9} \pm 1,3 \cdot 10^{-10}$	$0^{6} \left[6.5 \cdot 10^{3} \pm 2.5 \cdot 10^{3} \right. \left. \left. \left. 8.1 \cdot 10^{5} \pm 3.1 \cdot 10^{5} \right. \right. \left. \left. 2.3 \cdot 10^{2} \pm 9.0 \cdot 10^{3} \right. \right \right. \left. 3.2 \cdot 10^{7} \pm 1.3 \cdot 10^{7} \right. \left. \left. \left. \left. \left. 6.2 \cdot 10^{4} \pm 2.0 \cdot 10^{4} \right. \right 2.4 \cdot 10^{2} \right. \right. \left 3.0 \cdot 10^{2} \right. \right. \left. \left.$	
)	воздеиствие	KO per	$0^9 \left \ 7,1 \cdot 10^7 \pm 3,9 \cdot 10^8 \right \ 1,8 \cdot 10^6 \pm 9,7 \cdot 10^8 \ \left \ 7,1 \cdot 10^4 \pm 4,5 \cdot 10^4 \right \ \ 7,1 \cdot 10^9 \pm 3,9 \cdot 10^{-10}$	$4,7\cdot10^4\pm1,3\cdot10^4$	$0^9 \left \ 7.6 \cdot 10^5 \pm 5.8 \cdot 10^6 \right \ 4.3 \cdot 10^7 \pm 3.3 \cdot 10^8 \left \ 6.2 \cdot 10^3 \pm 7.7 \cdot 10^4 \right \ 1.7 \cdot 10^9 \pm 1.3 \cdot 10^{-10} \right \ 1.3 \cdot 10^{-10} + 1.3 \cdot 10^{-$	$2,3\cdot10^{-2}\pm9,0\cdot10^{-3}$	0,512±0,12
пероральное воздействие		LADD per, Mr/kr*день	$1,8\cdot10^{-6}\pm9,7\cdot10^{-8}$	$1,4\cdot 10^{-7}\pm 4,0\cdot 10^{-8}$	$4,3\cdot10^{-7}\pm3,3\cdot10^{-8}$	$8,1\cdot10^{-5}\pm3,1\cdot10^{-5}$	
	Метод 2	КО инг	$7,1\cdot10^{-7}\pm3,9\cdot10^{-8}$	$1,9\cdot10^{-5}\pm5,3\cdot10^{-6}$	$7,6\cdot10^{-5}\pm5,8\cdot10^{-6}$	$6.5 \cdot 10^{-3} \pm 2.5 \cdot 10^{-3}$	1,716±0,170
воздействие	Mer	Синг, нг/м³	$7,\!1\cdot\!10^{\text{-8}\pm\!3},\!9\cdot\!10^{\text{-9}}$	$5,7\cdot10^{-9}\pm1,6\cdot10^{-9}$	$1,7 \cdot 10^{-8} \pm 1,3 \cdot 10^{-9}$	$3,3\cdot10^{-6}\pm1,3\cdot10^{-6}$	
ингаляционное воздействие	0д 1	КОинг	Ι	$2,4\cdot10^{-7}\pm6,8\cdot10^{-8}$	I	3,4.10.6±1,3.10.6	0,0172±0,0014
Метод 1		LADDинг, мг/кг*день	W $2,6\cdot10^{-10}\pm1,4\cdot10^{-11}$	$\left. \mathrm{Hg} \left[2,1 \cdot 10^{-11} \pm 5,8 \cdot 10^{-12} \right] 2,4 \cdot 10^{-7} \pm 6,8 \cdot 10^{-8} \right 5,7 \cdot 10^{-9} \pm 1,6 \cdot 10^{-9} + 10^{-9} \pm 1,6 \cdot 10^{-9} \pm 1,6 $	T1 $6,4\cdot10^{-11}\pm4,9\cdot10^{-12}$	Pb $1,2 \cdot 10^{-8} \pm 4,6 \cdot 10^{-9}$ $3,4 \cdot 10^{-6} \pm 1,3 \cdot 10^{-6}$ $3,3 \cdot 10^{-6} \pm 1,3 \cdot 1$	
тнэмэпЄ			W	Hg	П	Pb	Σ KO

Таблица 3

Риски воздействия веществ почвы (по данным ИНАА)

<u> </u>											
НІ	2	$1,1 \cdot 10^{-1}$	$1,7 \cdot 10^{-1}$	$4.8 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1,9.10^{-2}$	$7,1\cdot 10^{-5}$	$1,8.10^{-2}$	$6,4 \cdot 10^{-2}$	$3,0.10^{-2}$	4,7.10-1
НІ НІ	1	$ 4,2\cdot10^{-2} $	$ 1,7\cdot 10^{-1} 1,7\cdot 10^{-1}$	$1,8.10^{-3}$	$5,3.10^{-4}$	$1,4.10^{-2}$	7,0.10-5	$1,7.10^{-2}$	$1,1 \cdot 10^{-2}$	_	$2,6.10^{-1}$
воздействие	KO derm	$1,1\cdot 10^{-2}\pm 4,3\cdot 10^{-4}$	_	$5.8 \cdot 10^{-6} \pm 2.6 \cdot 10^{-7}$	$1,0\cdot 10^{-5}\pm 1,4\cdot 10^{-6}$	$1,3\cdot10^4\pm2,7\cdot10^{-5}$	$1,5 \cdot 10^{-6} \pm 1,7 \cdot 10^{-22}$	$2.8\!\cdot\!10^{\!-3}\!\!\pm\!1,\!1\!\cdot\!10^{\!-3}$	$5.5 \cdot 10^{-4} \pm 2.6 \cdot 10^{-5}$	_	$1,4\cdot10^{2}\pm1,6\cdot10^{3}$ 2,6·10 ⁻¹ 4,7·10 ⁻¹
дермальное воздействие	LADD derm, Mr/kr*день	$6.3 \cdot 10^{2} \pm 2.6 \cdot 10^{3} \left 1.6 \cdot 10^{4} \pm 6.4 \cdot 10^{6} \right 3.2 \cdot 10^{2} \pm 1.3 \cdot 10^{3} \left 6.3 \cdot 10^{7} \pm 2.6 \cdot 10^{8} \right 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right \\ 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right \\ 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right \\ 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{1} \right \\ 1.1 \cdot 10^{2} \pm 4.3 \cdot 10^{4} \left 4.2 \cdot 10^{2} \right 1.1 \cdot 10^{2} $	$2,0.10^{-4}\pm 8,4.10^{-6}$	$4.6 \cdot 10^{2} \pm 2, 1 \cdot 10^{3} \left[\begin{array}{c cccc} 2,3 \cdot 10^{-5} \pm 1,0 \cdot 10^{-6} & 1,2 \cdot 10^{-3} \pm 5,2 \cdot 10^{-5} & 9,3 \cdot 10^{-8} \pm 4,1 \cdot 10^{-9} & 5,8 \cdot 10^{-6} \pm 2,6 \cdot 10^{-7} & 1,8 \cdot 10^{-3} & 4,8 \cdot 10^{-2} + 2,8 \cdot 10^{-2} & 1,8 \cdot 10^{-2} & 1,$	$7.0 \cdot 10^{3} \pm 9.5 \cdot 10^{4} \left 1.6 \cdot 10^{4} \pm 2.1 \cdot 10^{5} \right 5.2 \cdot 10^{4} \pm 7.1 \cdot 10^{5} \left 6.3 \cdot 10^{7} \pm 8.5 \cdot 10^{8} \right 1.0 \cdot 10^{5} \pm 1.4 \cdot 10^{6} \left 5.3 \cdot 10^{4} \right 7.5 \cdot 10^{3} \right = 1.0 \cdot 10^{5} \pm 1.0 \cdot 10^{5} \pm 1.0 \cdot 10^{5} \pm 1.0 \cdot 10^{5} + 1.0 \cdot 10^{5} \pm 1.0 \cdot 10^{5} + 1.0 \cdot 10^{$	$5.5 \cdot 10^{3} \pm 1,1 \cdot 10^{3} \left \begin{array}{ccc c} 4,1 \cdot 10^{-6} \pm 8,5 \cdot 10^{-7} & 1,4 \cdot 10^{-2} \pm 2,8 \cdot 10^{-3} & 1,6 \cdot 10^{-8} \pm 3,4 \cdot 10^{-9} & 1,3 \cdot 10^{-4} \pm 2,7 \cdot 10^{-5} & 1,4 \cdot 10^{-2} & 1,9 \cdot 10^{-2} & 1,9 \cdot 10^{-2} & 1,4 $	$ \left \ 1,4\cdot 10^{-9} \pm 1,5\cdot 10^{-25} \right \ 1,5\cdot 10^{-6} \pm 1,7\cdot 10^{-22} \ \left \ 7,0\cdot 10^{-5} \right \ 7,1\cdot 10^{-5} $	$5.7 \cdot 10^{4} \pm 2.3 \cdot 10^{4} \left \begin{array}{c c} 5.7 \cdot 10^{6} \pm 2.3 \cdot 10^{6} & 1.4 \cdot 10^{2} \pm 5.7 \cdot 10^{-3} & 2.3 \cdot 10^{-8} \pm 9.1 \cdot 10^{-9} & 2.8 \cdot 10^{-3} \pm 1.1 \cdot 10^{-3} & 1.7 \cdot 10^{-2} & 1.8 \cdot 10^{-2} \end{array} \right \\ 1.8 \cdot 10^{-4} \pm 2.3 \cdot 10^{-4} \pm 2.3 \cdot 10^{-4} + 2.3 $	$5.4 \cdot 10^{2} \pm 2.5 \cdot 10^{3} \left 6.8 \cdot 10^{4} \pm 3.1 \cdot 10^{5} \right 9.7 \cdot 10^{3} \pm 4.5 \cdot 10^{4} \left 2.7 \cdot 10^{6} \pm 1.3 \cdot 10^{7} \right 5.5 \cdot 10^{4} \pm 2.6 \cdot 10^{5} \left 1.1 \cdot 10^{2} \right 6.4 \cdot 10^{2}$	3,0.10-7±1,1.10-8	
воздействие	KO per	$ 3,2\cdot10^{-2}\pm1,3\cdot10^{-3} $	$3,4\cdot 10^{\cdot 3}\pm 1,4\cdot 10^{\cdot 4} \left 5,1\cdot 10^{\cdot 2}\pm 2,1\cdot 10^{\cdot 3} \left 1,7\cdot 10^{\cdot 1}\pm 7,0\cdot 10^{\cdot 3} \right 2,0\cdot 10^{\cdot 4}\pm 8,4\cdot 10^{\cdot 6}\right.$	$1,2\cdot 10^{-3}\pm 5,2\cdot 10^{-5}$	5,2.10-4±7,1.10-5	$1,4.10^{-2}\pm 2,8.10^{-3}$	6,8·10-5	$1,4.10^{-2}\pm5,7.10^{-3}$	$9,7\cdot10^{-3}\pm4,5\cdot10^{-4}$	1	$2,4\cdot10^{-1}\pm1,7\cdot10^{-2}$
пероральное воздействие	LADD per, Mr/кг*день	$1,6\cdot10^{-4}\pm6,4\cdot10^{-6}$	$5,1\cdot10^{-2}\pm2,1\cdot10^{-3}$	$2,3\cdot10^{-5}\pm1,0\cdot10^{-6}$	$1,6\cdot10^{-4}\pm2,1\cdot10^{-5}$	$4,1\cdot10^{-6}\pm8,5\cdot10^{-7}$	$3,4.10^{-7}$	$5,7\cdot10^{-6}\pm2,3\cdot10^{-6}$	$6,8\cdot10^{-4}\pm3,1\cdot10^{-5}$	$3,0\cdot10^{2}\pm5,7\cdot10^{4}$ 7,6·10·5±2,9·10·6	
од 2	КО инг	$6.3 \cdot 10^{-2} \pm 2.6 \cdot 10^{-3}$	$3,4\cdot10^{-3}\pm1,4\cdot10^{-4}$	$4,6\cdot10^{2}\pm2,1\cdot10^{3}$	$7.0 \cdot 10^{-3} \pm 9.5 \cdot 10^{-4}$	$5.5 \cdot 10^{-3} \pm 1, 1 \cdot 10^{-3}$	$6.8 \cdot 10^{-7}$	$5.7 \cdot 10^{-4} \pm 2.3 \cdot 10^{-4}$	$5,4\cdot10^{-2}\pm2,5\cdot10^{-3}$	$3.0 \cdot 10^{2} \pm 5.7 \cdot 10^{-4}$	$2,1\cdot10^{-1}\pm1,0\cdot10^{-2}$
ингаляционное воздействие Метод 2	С инг, нг/м3	$6,3\pm 2,6\cdot 10^{-1}$	$2,0\cdot10^3\pm8,4\cdot10^1$	9,3.10-1±4,2.10-2	$6,3\pm 8,5\cdot 10^{-1}$	$1,6\cdot10^{-1}\pm3,4\cdot10^{-2}$	$1,4 \cdot 10^{-2}$	$2,3\cdot10^{-1}\pm9,1\cdot10^{-2}$	$2,7 \cdot 10^{1}\pm 1,3$	$3,0\pm 1,1\cdot 10^{-1}$	
	КО инг	$3,1\cdot 10^{-9}\pm 1,9\cdot 10^{-9}$	_	$6,0\cdot10^{-4}\pm2,7\cdot10^{-5}$	7,7·10-8±1,0·10-8	$2,0\cdot10^{-6}\pm4,2\cdot10^{-7}$	$1,0.10^{-8}$	$2,1\cdot 10^{-6}\pm 8,4\cdot 10^{-7}$	$1,0\cdot 10^{-7}\pm 2,5\cdot 10^{-8}$ $7,0\cdot 10^{-4}\pm 3,2\cdot 10^{-5}$	ı	$1,3\cdot 10^{-3}\pm 6,0\cdot 10^{-5}$
Метод 1	LADD инг, мг/кт*день	Cr $2,3\cdot10^{-8}\pm5,2\cdot10^{-9}$ $3,1\cdot10^{-9}\pm1,9\cdot10^{-9}$	Fe 7,5·10-6±1,7·10-6	Co $ 3,4\cdot10^{-9}\pm8,4\cdot10^{-10} 6,0\cdot10^{-4}\pm2,7\cdot10^{-5} 9,3\cdot10^{-1}\pm4,2\cdot10^{-2} $	$Zn \mid 2, 3 \cdot 10^{\cdot 8} \pm 1, 7 \cdot 10^{\cdot 8} \mid 7, 7 \cdot 10^{\cdot 8} \pm 1, 0 \cdot 10^{\cdot 8} \mid 6, 3 \pm 8, 5 \cdot 10^{\cdot 1}$	As $ 6,0\cdot10^{-10}\pm6,8\cdot10^{-10} 2,0\cdot10^{-6}\pm4,2\cdot10^{-7} 1,6\cdot10^{-1}\pm3,4\cdot10^{-2}$	$5.0 \cdot 10^{-11}$	Sb $ 8,3\cdot10^{-10}\pm1,8\cdot10^9 2,1\cdot10^{-6}\pm8,4\cdot10^{-7} 2,3\cdot10^{-1}\pm9,1\cdot10^{-2}$	$1,0.10^{-7}\pm 2,5.10^{-8}$	Ce $1,1\cdot10^{-8}\pm2,3\cdot10^{-9}$	I
элемент		Cr	Fe	Co	Zn	As	Ag	qs	Ba	Ce	82

Таблица 4

Диапазоны ориентировочно приемлемых содержаний химических элементов в почвах, при которых формируемый уровень неканцерогенного риска не будет превышать 1 (мг/кг)

Химический элемент	приемлемых	Диапазон ориентировочно приемлемых содержаний в почвах					
элемент	минимальная концентрация	максимальная концентрация					
Al	12017	15862					
V	44.6	47.6					
Cr	36.7	47.2					
Mn	319	355					
Co	6.6	7.0					
Ni	16.4	17.8					
Cu	18.2	29.0					
Zn	99	219					
As	9.0	12.8					
Ba	138	181					

При увеличении числа элементов, включенных в расчет, за счет возможностей метода МС ИСП, идет увеличение численных значений коэффициентов опасностей ингаляционного воздействия, оцениваемых по 1-ому и 2-ому способам (увеличение в 8,2 раза), перорального воздействия (увеличение в 2,1 раза) и дермального воздействия (увеличение в 3,2 раза).

На результаты оценок риска слабо влияет количество проб, что позволяет ограничивать их число при натурных измерениях. Большее влияние оказывает перечень определяемых химических элементов. С увеличением количества анализируемых и вовлекаемых элементов

в процедуру оценки риска возрастает суммарный индекс риска.

В таблице 5 приведены результаты расчетов канцерогенных рисков. Канцерогенные риски от воздействия компонентов почвы Ве $(4,6\cdot10^{-6})$, Сг $(2,4\cdot10^{-5})$, Аѕ $(2,2\cdot10^{-5})$, Сd $(1,1\cdot10^{-8})$, Рb $(1,6\cdot10^{-6})$ не превышают значения, принятые в качестве приемлемых $(1\cdot10^{-6}-1\cdot10^{-4})$, при этом вероятности реализации доз при пероральном поступлении, соответствующих канцерогенному риску более 10^{-6} , составляют, соответственно, 4%; 73,8%; 78%; 1%; 74,1%.

В таблице 6 элементы объединены в группы согласно механизму их воздействия на одни и те же органы организма человека. Видно однонаправленное влияние большой группы элементов на органы дыхания и центральную нервную системы (ЦНС) (15 и 4 соответственно), при ингаляционном пути поступления. Коэффициенты опасности, суммированные по однонаправленному воздействию на органы дыхания при ингаляционном пути поступления, по первым четырем органам (дыхания, ЦНС, нервная система, системные) в 3-15 раз отличаются от суммарных КО по другим органам, что доказывает проявленность направленности влияния. В структуре впервые выявленной заболеваемости [34] на первом месте у всего контингента города также находятся болезни органов дыхания (у детей 54.9%, у подростков 43,9%, у взрослых 20,2%).

Что касается КО при суммации элементов при пероральном поступлении, эти значения различаются не более чем в два раза для 10 жизненно важных органов и систем, от иммунной и центральной нервной системы до ЖКТ и сердечно-сосудистой систем, т.е. более равномерно воздействие на эти органы.

 Таблица 5

 Величины канцерогенных рисков от воздействия компонентов почвы

	По результата	ам мето	ода МС ИСП	По результатам метода ИНАА			
	LADD мг/кг*день	P	R _{инд.канц.}	LADD, мг/кг*день	P	R _{инд.канц.}	
Be	1,1·10 ⁻⁶ ±6,8·10 ⁻⁸	4	4,6·10 ⁻⁶ ±2,9·10 ⁻⁷	-	-	-	
Cr(VI)	5,7·10 ⁻⁵ ±7,1·10 ⁻⁶	74	2,4·10 ⁻⁵ ±3,0·10 ⁻⁶	6,8·10 ⁻⁵ ±2,7·10 ⁻⁶	74	2,9·10 ⁻⁵ ±1,2·10 ⁻⁶	
As	1,5·10 ⁻⁵ ±2,5·10 ⁻⁶	78	2,2·10 ⁻⁵ ±3,8·10 ⁻⁶	1,8·10 ⁻⁶ ±3,6·10 ⁻⁷	100	2,6·10 ⁻⁶ ±5,5·10 ⁻⁷	
Cd	2,9·10 ⁻⁷ ±7,2·10 ⁻⁸	1	1,1·10 ⁻⁸ ±2,7·10 ⁻⁹	-	-	-	
Pb	3,5·10 ⁻⁵ ±1,3·10 ⁻⁵	74	1,6·10 ⁻⁶ ±6,3·10 ⁻⁷	-	-	-	

Таблица 6

Суммарные коэффициенты опасности, рассчитанные с учетом объединения химических элементов по направленности их воздействия на органы и системы человека и пути поступления поллютантов в организм

	1	1						
Органы	F.140	Учтенные						
и системы	Σ ΚΟ	химические						
		элементы						
ингаляц	ионное во	здействие						
Органы дыха-		Be, V, W, Fe, Cd,						
ния	1,302	Co, Mn, Cu, As, Ni,						
THIC		Se, Sb, Te, Cr, Zn						
ЦНС	0,898	Mn, Ni, Hg, Pb						
Нервная система	0,894	Mn, As						
Системные заболевания	0,239	Co, Cu, As, Se						
Сердечно- сосудистая	0,086	Ba, As						
Иммунная (сенсибил.)	0,070	Be, Ni, Zn						
Кровь	0,072	Ni, Pb, Zn						
Развитие	0,052	As, Pb						
Репродуктивная	0,040	Ba						
Гормональная	0,001	Cd, Hg						
Почки	0,001	Cd, U						
Кожа	3,9.10-7	Ag						
пероральное воздействие								
Иммунная (сенсибил.)	0,267	Fe, As, Hg						
ЦНС	0,190	Al, Mn, As, Hg, Pb, Te						
Кровь	0,188	Fe, Co, Mn, Ni, Pb, Zn						
Кожа	0,175	Fe, Pb						
Слизистые	0,152	Fe						
Гормональная	0,140	Cd, As, Hg, Pb						
Нервная	0,138	As, Pb						
Сердечно- сосудистая	0,124	Ba, As, Ni						
ЖКТ	0,122	Be, Cu, As, Ni						
Биохим	0,115	Sb, Tl, Zn						
Печень	0,043	V, Cu, Ni, Pb, Tl, Te						
Репродуктивная	0,024	Hg, Pb						
Волосы	0,008	V, Se						
Почки	0,009	Ba, Cd, Mo, Hg, U						
Селезёнка	0,001	Se						

Заключение

Расчет рисков хронической интоксикации на основании изучения тома ПДВ од-

ной из угольных шахт Кузбасского региона (из тяжелых металлов есть оценка по Мп, и опосредовано, через золу углей) показал, что хроническое ингаляционное воздействие на здоровье населения, с учетом расстояния от источников выбросов до жилой зоны, не оказывается [35]. В исследованиях, специально сфокусированных на установлении рисков воздействия ТМ почв в угледобывающих регионах, установлено, что в районе открытых шахт автономного района на севере Китая (угли с повышенным содержанием мышьяка) уровень риска по Cd, Be, Ni, расценивается как приемлемый, а $R_{\text{канц.}}(As)$ превышает приемлемый в 6,29-8,70 раз, HQ – в 4,53 раз [36]. В [37], юго-западная провинция (Guizhou) Китая, элементы почв по значению фактора потенциального экологического риска образуют следующий ряд Hg > As > Cd > Pb > Cu >Ni > Cr, при этом степень потенциального экологического риска от Hg and As оценивается как высокая. По уменьшению фактора загрязнения как показателя опасности для здоровья элементы почв угольного поля Jharia, Индия [38] располагаются в ряду Cd (1,83)>Cu(1,46) >Zn,Pb (1,43)>Fe(1,43)>Ni (1,43)>Сг(1,43). За формирование состава почв ответственны три фактора - угледобыча и пожары на шахтах – 40%, пыление (23%) поступление из земной коры (24%), по этим же данным [38]. При этом авторы связывают поступление Ni, Cu, Cr с деятельностью угольных шахт, Pb, Fe, Cd – с ветровым переносом, Mn, Zn –поступление из земной коры. На наш взгляд, как подробно описано выше, почвенное загрязнение г. Междуреченск формируется под влиянием выбросов местных котельных и угольной пыли; автотранспорта, ремонтных и металлообрабатывающих производств, в результате использования вскрышных угольных пород при строительстве города и также определяется геохимической специализацией угля. В [39], Пакистан, нет количественных характеристик риска, однако описывается влияние Pb, Hg, As как компонентов углей и продуктов их сгорания, на биологические объекты, с использованием зависимости «Доза-эффект». В целом, если привлекать к обсуждению не только риски почвенного загрязнения в районе угольных шахт, но и от других источников, прослеживается тенденция привлечения к расчету и обсуждению большого круга элементов почв, как и в настоящем исследовании.

Сопоставим ряды элементов по уменьшению коэффициентов опасности (характе-

ристика неканцерогенного риска) для двух разных географических регионов: Южного Кузбасса, по данным настоящей статьи,

КО (неканц.): Sb $(1.3\ 10^{-1})$ > As $(1.2\ 10^{-1})$ > Al $(5,0\ 10^{-2})$ > Cr $(3,6\cdot 10^{-2})$ > Mn $(2,1\cdot 10^{-2})$ > Cd $(1,6\ 10^{-3})$ > Cu $(3,9\cdot 10^{-3})$ > Ni $(2,7\cdot 10^{-3})$ > Pb $(2,4\cdot 10^{-2})$ > Zn $(1,7\cdot 10^{-3})$; HI = $5,7\cdot 10^{-1}$

и по данным [8], оценки получены для угольных шахт вдоль реки Qingshui (Beijing, Китай):

KO (неканц.): Mn (6.06 10^{-3})>Pb(5.46 10^{-3})> Cr(4.77 10^{-3})> Ni (5.94 10^{-4})>Cd(3.93 10^{-4}) > Cu(2.02 10^{-4})>Zn (9.14 10^{-5}); HI = 1,76·10⁻²

Наблюдаемые различия в коэффициентах опасности очевидны и обусловлены, главным образом, содержанием элементов в почвах, которые, в свою очередь зависят от геохимических особенностей почв разных географических регионов, природных и техногенных факторов. Однако несомненным достоинством цитируемой работы является учет в оценке риска не валового содержания металла, а его доступной усвояемой формы, выделенной в результате фракционирования проб, что более приближает исследование к реальной ситуации и что планируется также в наших дальнейших исследованиях.

Входные аналитические данные с использованием инструментального нейтронно-активационного анализа и массспектрометрии с индуктивно-связанной плазмой влияют на получаемые оценки риска. На наш взгляд, наиболее надежные результаты оценки риска получаются при включении в методики расчетов концентраций максимально широкого перечня элементов, при обязательно учете основных элементов, обуславливающих риск (As, Cd, Sb, Mn, Ba, Al, Cu, As, Cr, Co, Ni, Pb).

Также влияет и способ оценки ингаляционного поступления веществ из почвы непосредственного проникновения почвенных загрязнений в зоне дыхания человека, и с использованием моделей переноса загрязнителей из почвы в воздух. Элементами, формирующими суммарный коэффициент опасности более 1 при ингаляционном поступлении, как доминирующем, являются Mn, Al, Cu, V,Cr, As.

Использование нами при расчетах стандартных факторов экспозиции и альтернативных методик в части оценки ингаляционного пути поступления, учет всех реально воздействующих путей поступления, позволяет сравнивать полученные ре-

зультаты с данными по другим регионам, ранжировать вклад различных металлов в суммарный риск; — в зависимости от преобладающих отраслей производства в различных регионах «индикаторные элементы риска» будут различны.

Различия в рядах элементов, специфических по геохимическим и экологогигиеническим показателям, показывает на необходимость сочетания геохимического и эколого-гигиенического подходов при оценке опасности почвенного загрязнения, и необходимость учета эколого-геохимических особенностей территории при интерпретации результатов оценки рисков. При ограниченном перечне тяжелых металлов, определяемых на постах наблюдений в атмосферном воздухе, в городах с высоким уровнем антропогенной нагрузки, целесообразны регулярные измерения в почвах содержаний потенциально опасных тяжелых металлов и оценка риска воздействия этих металлов на здоровье не только в рамках санитарно-гигиенических, но и в эколого-геохимических исследованиях.

Авторы выражают благодарность за критические замечания и ценные советы при подготовке статьи члену-корреспонденту РАН, доктору химических наук, профессору Тарасовой Наталии Павловне

Исследование выполнено при финансовой поддержке $P\Phi\Phi U$ в рамках научного проекта $N \geq 20-05-00675$ A.

Исследования выполнены в Национальном исследовательском Томском политехническом университете в рамках программы повышения конкурентоспособности ТПУ среди ведущих мировых исследовательских центров.

Список литературы

- 1. Сергеев А.К., Сучков В.В., Анисимов В.Н. Комплексная оценка риска здоровью населения при воздействии загрязняющих веществ в атмосферном воздухе городского округа Самара // Смоленский медицинский альманах. 2016. № 1. С. 213-216.
- 2. Чуенкова Г.А., Карелин А.О., Аскаров Р.А., Аскарова 3.Ф. Оценка риска здоровью населения города Уфы, обусловленного атмосферными загрязнениями // Гигиена и санитария. 2015. № 3. С. 24-29.
- 3. Валеуллина Н.Н., Уральшин А.Г., Брылина Н.А., Никифорова Е.В., Бекетов А.Л., Гречко Г.Ш. Опыт многосредовой оценки риска для здоровья с целью обеспечения безопасности населения г. Челябинска // Гигиена и санитария. 2015. № 2. С. 93-23.
- 4. Онищенко Г.Г., Новиков С.М., Рахманин Ю.А., Авалиани С.Л., Буштуева К.А. Основы оценки риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду. М.: НИИ ЭЧ и ГОС, 2002. 408 с.
- 5. Рахманин Ю.А., Новиков С.М., Шашина Т.А., Иванов С.И. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих

- окружающую среду. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. 143 с.
- Risk Assessment Guidance for Superfund: Volume 1 Human Health Evaluation Manual. Part A. Washington, DC, USA: US EPA. (US Environmental Protection Agency), 1989.
 291 p.
- Захаренков В.В., Кислицына В.В. Определение приоритетности природоохранных мероприятий на основе оценки риска для здоровья населения промышленного города // Успехи современного естествознания. 2014. № 2. С. 12-15.
- 8. Hongxia Li, Hongbing Ji. Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China. Journal of Geochemical Exploration. 2017. V. 183 (A). P. 22-32.
- 9. Макаров О.А., Макаров А.А. Подходы к оценке риска химического загрязнения городских почв // Почвоведение. 2016. № 9. С. 1147-1156.
- 10. Коновалов, А.Г., Рисник Д.В., Левич А.П., Фурсова П.В. Обзор подходов к оценке экологического состояния и нормированию качества почв // Биосфера. 2017. № 9 (3). С. 214-229.
- 11. Dumitrescu C., Cocârta~J3 D.M., Badea A. An integrated modeling approach for risk assessment of heavy metals in soils. Univ. Politehn. Bucharest. Sci. Bull. D. 2012. V. 74. No. 3. P. 217-228.
- 12. Антипанова Н.А. Геохимическое загрязнение и канцерогенный риск здоровью экспонируемого населения центра черной металлургии // Современные проблемы науки и образования. 2007. № 3. С. 97-101.
- 13. Менчинская О.В., Шатагин Н.Н., Зангиева Т.Д., Кайтуков М.З. Оценка влияния неканцерогенных веществ на здоровье населения по техногенным геохимическим аномалиям в почвах (на примере Владикавказа) // Прикладная геохимия. 2004. №5. С.188-201.
- 14. Li Z, Ma Z, Jan K.T., Jan T., Yuan Z, Huang L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science Total Environment. 2014. V. 468-469. P. 843-853. DOI: 10.1016/j.scitotenv.2013.08.090.
- 15. Cao S., Duan X., Zhao X., Ma J., Dong T., Huang N. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science Total Environment. 2014. V. 472. P. 1001-1009.
- 16. Saghatelyan A., Tepanosyan G, Sahakyan L. Human health risk assessment of heavy metals in the urban environments of Armenia. 7th International Conference on Medical Geology. 2017, Aug. 28 Sept. 1; Moscow; Russia. Moscow: Publishing House of I.M. Sechenov First MSMU. 2017. V. 1. P.71.
- 17. Унгуряну, Т.Н., Гудков А.Б., Никанов А.Н. Оценка риска для здоровья населения при воздействии контаминантов почвы // Профилактическая и клиническая медицина. 2012. № 1. С.101–105.
- 18. Суржиков Д.В., Кислицына В.В., Олещенко А.М. Влияние выбросов предприятий угольной промышленности на здоровье населения // Медицина в Кузбассе. 2017. № 3. С. 27–32.
- 19. Ревич Б.А., Сает Ю.А., Смирнова Р.С. Методические рекомендации по геохимической оценке загрязнения территории городов химическими элементами. М.: ИМГРЭ, 1990.17 с.
- 20. Касимов Н.С., Власов Д.В. Кларки химических элементов как эталоны сравнения в экогеохимии //Вестник Московского Университета. Сер. 5. География. 2015. № 2. С.7-17.
- 21. Сает Ю.Е., Ревич Б.А., Янин Е.П. Геохимия окружающей среды. М.: Недра, 1990. 335 с.
- 22. Dawoud E., Purucker S. Quantitative Uncertainty Analysis of Superfund Residential Risk Pathway Models for Soil and Groundwater: White Paper, Tech. rep., USA: USEPA, 1996. 256 p.
- 23. McKone T.E., Daniels J.I. Estimating human exposure through multiple pathways from air, water, and soil. Regulatory Toxicology and Pharmacology. 1991. V. 6. P. 36-61.

- 24. Kimberly M. Thompson. Software Review of Risk*Assistant (Version 1.1) and RiskEZ (Version 1), both for Windows. Human and Ecological Risk Assessment: An International Journal. 1998. V. 4. P.47-652. DOI: 10.1080/10807039891284514.
- 25. Nadal M., Schuhmacher M., Domingo J.L. Probabilistic human health risk of PCDD/F exposure: a socioeconomic assessment. Journal of Environmental Monitoring. 2004. V. 6. P. 926–931.
- 26. Huang J., Wu Y., Sun J., Li X., Geng X., Zhao M., Sun T., Fan Z. Health Risk Assessment of Heavy Metal(loid)s in Park Soils of the Largest Megacity in China by Using Monte Carlo Simulation Coupled with Positive Matrix Factorization Model. Journal of Hazardous Materials. 2021. V. 415. DOI: 10.1016/j. jhazmat.2021.125629.
- 27. Shen L., Zeng J., Guo E., Shen L., Cheng Y.Li L., Niu C., Yuan Y., Ma L. Source apportionment and risk assessment of heavy metals in urban soils from a central China city by using positive matrix factorization model coupled with Monte Carlo simulation. Stochastic Environmental Research and Risk Assessment. 2022. DOI: 10.1007/s00477-022-02297-w.
- 28. Журавлева Н.В., Иваныкина О.В., Исмагилов З.Р., Потокина Р.Р. Содержание токсичных элементов во вскрышных и вмещающих породах угольных месторождений Кемеровской области // Горный информационно-аналитический бюллетень. 2015. № 3. С. 187-197.
- 29. Осипова Н.А., Быков А.А., Таловская А.В., Николаенко А.Н., Язиков Е.Г., Ларин С.А. Влияние угледобывающих предприятий на загрязнение снегового покрова прилегающих урбанизированных территорий (на примере г. Междуреченск) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. № 12. С. 36-46.
- 30. Yudovich Ya.E., Ketris M.P. Geochemistry of coal. Occurrences and environmental impacts of trace elements. Coal Production and Processing Technology. Boka Raton: CRC Press, 2015. P. 48–73.
- 31. Рыжакова Н.К., Рапута В.Ф., Рогова Н.С., Борисенко А.Л., Покровская Е.А. Пространственное распределение химических элементов атмосферных выбросов угольной ТЭЦ // Экология и промышленность России. 2013. № 1. С. 52–55.
- 32. Филимоненко Е.А., Таловская А.В., Язиков Е.Г., Чумак Ю.В., Ильенок С.С. Минералогия пылевых аэрозолей в зоне воздействия промышленных предприятий г. Томска // Фундаментальные исследования. 2013. № 8-3. С.760-765.
- 33. Таловская А.В., Язиков Е.Г., Филимоненко Е.А., Осипова Н.А., Шахова Т.С. Микроэлементный состав снежного покрова в окрестностях угольных и газовых котельных как показатель экологичности используемого топлива // Безопасность в техносфере. 2017. №3. С.3-12.
- 34. О состоянии и охране окружающей среды Кемеровской области -Кузбасса в 2020 г. // [Электронный ресурс]. URL: https://ako.ru>upload/medialibrary/a7b/doklad_2020.pdf (дата обращения:02.12.2022).
- 35. Суржиков В.Д., Суржиков Д.В., Голиков Р.А. Загрязнение атмосферного воздуха промышленного города как фактор неканцерогенного риска для здоровья населения // Гигиена и санитария. 2013. № 1. С. 47–49.
- 36. Jia J.; Li X.; Wu P.; Liu Y.; Han C.; Zhou L.; Yang L. Human Health Risk Assessment and Safety Threshold of Harmful Trace Elements in the Soil Environment of the Wulantuga Open-Cast Coal Mine. Minerals. 2015. V. 5. P. 837-848.
- 37. Qin F., Wei C., Zhong S., Huang X., Pang W., Jiang X. Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China. Journal of Central South University. 2016. V. 23. P. 2205-2213.
- 38. Pandey B., Agrawal M., Singh S. Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments. 2016. V. 16. No 1. P. 159-168.
- 39. Munawer M. E. Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining. 2017. V. 17 (2). P. 87-96.