EARTH SCIENCES (25.00.00)

УДК 553,411:546,65 О ТИПОХИМИЗМЕ ШЕЕЛИТА РАЗНОГЛУБИННЫХ РУДОПРОЯВЛЕНИЙ ЗОЛОТА ЗАПАДНОЙ ТУВЫ

Кужугет Р.В., Монгуш А.А.

Тувинский институт комплексного освоения природных ресурсов СО РАН, Кызыл, e-mail: rkuzhuget@mail.ru

Авторами впервые изучен типохимизм шеелитов в разноглубинных рудопроявлениях Au вулканогенно-плутоногенной гидротермальной золото-кварцевой формации Алдан-Маадырского рудного узла. Особенности распределения РЗЭ в шеелитах Хаак-Саирского и Улуг-Саирского рудопроявлений показывают, что формирование этих рудопроявлений происходило в единой рудообразующей системе, но на различных фациях глубинности. Наиболее информативными типохимическими параметрами для шеелита оказались отношение Sr/Mo и концентрации РЗЭ. В шеелитах Хаак-Саирского гипабиссального (Р ~ 0,5 кбар; ~ 1,5 км) рудопроявления из РЗЭ преобладают Еu, Се и La, величина Sr/Mo = 3586–6390 (среднее 4988), в шеелитах Улуг-Саирского гипо-мезоабиссального (Р ~ 0,9–1,0 кбар; ~ 2,7–3,0 км) рудопроявления – Nd, Gd, Sm и Dy, Sr/Mo⁼24–55 (среднее = 36,92). С ростом глубинности в шеелите увеличивается концентрация Y и РЗЭ.

Ключевые слова: редкоземельные элементы, шеелит, типохимизм, месторождения золота, Тува

TYPOCHEMISTRY OF SCHEELITE OF DIFFERENT-DEPTH GOLD-ORE OCCURRENCES IN WESTERN TUVA

Kuzhuget R.V., Mongush A.A.

Tuvinian Institute for Exploration of Natural Resources, SB RAS, Republic of Tyva, Kyzyl, e-mail: rkuzhuget@mail.ru

The authors first studied typochemism of scheelite in different-depth gold-ore occurrences of volcanoplutonic hydrothermal gold-quartz formation of the Aldan-Maadyr gold-ore cluster. Features of REE distribution in scheelites of the Khaak-Sair and Ulug-Sair ore occurrences show that their formation took place in a single ore-forming system, but at different depth facies. The Sr/Mo ratio and REE concentrations appeared to be the most informative typochemical parameters for scheelite. In sheelites of the Khaak-Sair hypabyssal ore occurrence (depth ~ 1,5 km, P ~ 0,5 kbar), Eu, Ce and La dominate from REE, the value of Sr/Mo = 3586–6390 (average=4988); in sheelites of the Ulug-Sair hypomesoabyssal ore occurrence (depth ~ 2,7–3 km, P ~ 0,9–1,0 kbar) Nd, Gd, Sm, and Dy are dominant, Sr/Mo = 24–55 (average = 36,92). With increasing depth, the Y and REE concentration increasing in scheelite.

Keywords: rare earth elements, scheelite, typochemism, gold deposits, Tuva

Минерал шеелит распространён в природе сравнительно широко. Главным образом он встречается в гидротермальных и контактово-метасоматических месторождениях. В рудах месторождений различного генезиса, преимущественно жильных гидротермальных, он также отмечается, но сравнительно реже.

Поведение редкоземельных элементов (РЗЭ) в шеелитах различных месторождений, которое определяется физико-химическими параметрами среды кристаллизации шеелита и примесями в минерале, признано наиболее информативным для определения фаций глубинности формирования гидротермальных месторождений Au [7; 2].

В Западной Туве одним из перспективных рудных узлов на коренное Au является Алдан-Маадырский рудный узел (AMPУ), расположенный на левобережье р. Хемчик. В геологическом строении рудного узла принимают участие различные комплексы: венд-кембрийские офиолитовые ассоциации фундамента Хемчикско-Куртушибинской преддуговой зоны, метатерригенные комплексы Западного Саяна, ордовик-силурийская молласа Хемчикско-Сыстыгхемского коллизионного прогиба и девонские соленосно-туффито-терригенные комплексы Тувинского рифтогенного прогиба [3]. В пределах АМРУ выделяются несколько малосульфидных золото-кварцевых рудопроявлений Аu. Наиболее крупные из них – Улуг-Саирское и Хаак-Саирское рудопроявления Au, содержащие шеелит, являются объектами наших исследований.

Краткая геологическая характеристика рудопроявлений АМРУ

Хаак-Саирское рудопроявление представлено пятью участками развития золото-кварцевых жил на площади 2×8 км среди лиственитов и офиолитов (V–C₁), конгломератов, алевролитов и песчаников ордовика. Большую часть его площади занимают мусковит-парагонит-кварц-карбонатные (зелёные) и типичные кварц-карбонатные (серые) листвениты по гипербазитам. Ору-

6 🗖

денение локализовано в жилах и жильных зонах, приуроченных к центральным частям плащеобразных залежей лиственитов. Простирание жил и жильных зон на участке I ориентировано вкрест простирания залежи лиственитов, на других участках рудопроявления соответствует их общему широтному простиранию. Жилы и жильные зоны сложены молочно-белым, светло-зеленоватым или бледно-коричневатым халцедоновидным или тонкозернистым кварцем.

Рудные тела Улуг-Саирского рудопроявления развиты на площади 1×4 км. Золоторудная минерализация здесь чаще всего наложена на кварц-турмалиновые метасоматиты. Золотоносными являются кварцевые жилы и кварцево-жильные зоны, локализованные в конгломератах и алевролитах, реже в сланцах. Простирание жил и жильных зон восток-северо-восточное, падение – близко к вертикальному.

Минералого-геохимические особенности руд и условия их образования Хаак-Саирского и Улуг-Саирского рудопроявлений АМРУ свидетельствуют о том, что они являются производными единой сложной гидротермальной рудообразующей системы с латеральной и вертикальной минеральной зональностью.

Формирование рудных тел Хаак-Саирского и Улуг-Саирского рудопроявлений происходило в течение двух этапов. На 1-м этапе возникла высокотемпературная кварц-турмалиновая формация (кварцтурмалиновые метасоматиты и кварцтурмалиновые жилы) с фторапатитом и W-содержащим рутилом, которая генетически связана с малыми интрузиями гранодиорит- и тоналит-порфиров I фазы баянкольского комплекса (D₂₋₃), что установлено в рудном поле Хаак-Саирского рудопроявления. На 2-м этапе сформировались предрудные среднетемпературные березит-лиственитовой метасоматиты формации и сопряжённые с ними безрудные кварц-пиритовые жилы с шеелитом, а также поздние кварцево-жильные образования с различными типами золотой минерализации, т.е. наблюдается последовательное отложение различных типов золотой минерализации. Дорудный шеелит отмечается в большинстве золотокварцевых жил рудопроявлений. В конце 2-го этапа образовались пострудные карбонатно-кварцевые и хлорит-гематиткварцевые прожилки.

Золото-кварцевые жилы Хаак-Саирского рудопроявления формировались на

гипабиссальной фации глубинности при давлении (P) ~ 0,5 кбар (~ 1,5 км) на фоне снижения температур (T) – 290–133 °С, Улуг-Саирского рудопроявления – в условиях гип-мезоабиссальной фации глубинности при Р ~ 0,9−1,0 кбар (~2,7−3,0 км), Т - 360-145 °С. Формирование продуктивных минеральных ассоциаций рудопроявлений происходило при вариациях $f(O_2), f(S_2), f(S_2)$ и $f(Te_2)$. Хаак-Саирское рудопроявление гипабиссальной фации глубинности по составу продуктивных ассоциаций отвечает золото-галенит-сульфоантимонитовому типу с серебристыми блёклыми рудами, ртутистыми разновидностями минералов ряда Au-Ag, селенидами (Au-Ag, Ag, Pb, Hg) и теллуридами (Ag, Hg), Улуг-Саирское рудопроявление – золото-сульфидному типу с теллуридами и селенидами Au и Ag (фишессерит и др.), селено-теллуридами Ад и Ві [4].

Золоторудные объекты АМРУ характеризуются весьма своеобразным минеральным составом руд, для которых присущи некоторые черты вулканогенно-гидротермальных месторождений Au: Au-Ag-Se-Teминерализация, осцилляционная зональность некоторых блеклых руд и т.д. Многие исследователи месторождений Au такого генезиса относят к вулканогенно-плутоногенной гидротермальной золото-кварцевой формации [5, 6].

Отбор образцов и методика аналитических исследований

В Хаак-Саирском рудопроявлении ксеноморфные выделения шеелита до 2 мм отобраны из протолочных проб из низкотемпературной золотоносной жилы № 1 (участок II). В Улуг-Саирском рудопроявлении шеелиты (с размерами до 1,7 мм) также отобраны из протолочной пробы из наиболее золотоносной и высокотемпературной жилы № 18.

Монофракции шеелитов отбирались из черных шлихов протолочных проб (> 2 мм) при помощи бинокуляра с ультрафиолетовой лампой. Полученные монофракции монтировались в шашку. Химический состав шеелита определялся на растровом электронном микроскопе (с пределами обнаружения содержаний элементов-примесей – 0,01 мас. %) MIRA LM (Институт геологии и минералогии СО РАН, г. Новосибирск, аналитик С.Н. Карманов). Содержания микроэлементов, в т.ч. РЗЭ, в шеелите определялись методом LA ICP–MS (Институт геологии и минералогии СО

РАН, г. Новосибирск, аналитик С.В. Палесский), результаты анализов приведены в таблице. Спектры распределения микроэлементов в шеелитах нормированы по хондриту (для РЗЭ) и примитивной мантии (для редких элементов) [9]. Численное значение Eu-аномалии (Eu/Eu*) рассчитывалось по формуле Eu/Eu*=Eu_N/(Sm_N*Gd_N)1/2.

Типохимизм шеелита

Для шеелита *Хаак-Саирского рудопроявления* характерна красноватая, желто-оранжевая окраска. Состав минерала близок стехиометрическому, содержания (мас.%): СаО 18,63–19,06; SrO 0,91–1,15 и WO₄ 79,36– 79,73. Суммарные содержания РЗЭ в шеелите составляют 81–296 г/т, Y – от 10,8 до 63,7 г/т (таблица). Минерал обогащён лёгкими и, прежде всего, средними лантаноидами: Σ (La–Nd)_N = 97–498; Σ (Sm–Ho)_N = 771–1939; Σ (Er–Lu)_N = 17–72. На спектрах распределения микроэлементов отмечается наличие положительных Еu-аномалий (Eu/Eu* = 3,06–15,23) (рисунок, *a*).

Отметим, что температура гомогенизации (Т_{гом}) флюидных включений золотоносных жил в кварце на участке II Хаак-Саирского рудопроявления составляет 188–124 °С, солёность – 4–8,2 мас. % NaC1экв, для жилы № 18 Улуг-Саирского рудопроявления: Т_{гом} – 310–240 °С, солёность – 6–9,6 мас. % NaCl-экв [1; 3].

Содержание микроэлементов в шеелите из разноглубинных золото-кварцевых рудопроявлений АМЗУ (г/т)

Рудопроявление	Хаак-Саирское		Улуг-Саирское			
	XC-1	XC-2	УС-2	УС-4	УС-6	УС-10
Rb	0,009	0,009	0,024	0,033	0,077	0,030
Sr	830,647	688,482	88	91	75	74
Y	10,810	63,746	130	278	224	262
Zr	0,229	1,664	3,0	2,1	2,6	1,94
Nb	0,049	0,330	0,90	1,28	1,47	0,79
Мо	0,130	0,192	3,6	2,1	3,0	1,36
Cd	0,001	0,003	0,025	0,015	0,016	0,015
Cs	0,001	0,002	0,002	0,002	0,0003	0,0006
Ba	0,078	0,464	1,03	1,56	0,43	0,48
La	10,372	58,374	6,5	13,8	11,0	14,6
Ce	13,378	73,184	36	81	64	82
Pr	1,839	8,092	12,9	27	22	27
Nd	6,825	26,453	111	226	182	226
Sm	1,456	5,216	79	161	125	148
Eu	42,154	103,264	15,6	32	27	31
Gd	2,047	5,915	110	222	179	199
Tb	0,213	0,905	16,1	31	26	29
Dy	1,359	6,299	75	150	124	138
Но	0,258	1,188	9,4	19,3	16,1	18,2
Er	0,710	3,408	15,9	33	27	31
Tm	0,106	0,494	1,26	2,7	2,2	2,5
Yb	0,699	3,008	4,2	9,2	7,5	9,1
Lu	0,077	0,345	0,29	0,64	0,55	0,63
Pb	2,334	12,173	7,9	7,2	9,4	7,5
Th	0,315	0,282	0,17	0,23	0,23	0,16
U	2,260	6,785	0,006	0,004	0,003	0,003
ΣΡ3Э	81,5	296,2	493,2	1008	813,4	956
Sr/Mo	6390	3586	24,44	43,33	25	54,91
Eu/ Eu*	15,23	3,60	0,002	0,001	0,001	0,001

Примечание. XC-1 и XC-2 – номера зёрен шеелита из кварцевой жилы № 1 участка II Хаак-Саирского рудопроявления; VC-2, VC-4, VC-4, VC-10 – номера зёрен шеелита из кварцевой жилы № 18 Улуг-Саирского рудопроявления.

180

Спектры РЗЭ в шеелитах Хаак-Саирского (а, в; образцы ХС-1 и ХС-1) и Улуг-Саирского (б, г; образцы УС-2, УС-4, УС-6, УС-10) рудопроявлений. При построении диаграмм также были использованы данные о содержании микроэлементов в шеелитах из других месторождений [7], в которых отсутствуют данные по концентрациям U и Zr: Г – месторождения Бестюбе (Казахстан) гипабиссальной фации глубинности – 0,6–1,0 кбар (~ 1,8–3,0 км); М – месторождений мезоабиссальной фации глубинности (Степняк, Ирмовское, Первомайское, Утковское (Казахстан)) – 1,1–1,8 кбар (~ 3–5,4 км); А1 и А2 – месторождения абиссальной фации глубинности (Джеламбет (Казахстан)) – 1,8–3,3 кбар (~ 5,4–10 км)

Шеелит Улуг-Саирского рудопроявления имеет светло-желтую, серовато-желтоватую, реже бесцветную окраску. Красноватая и желто-оранжевая окраска шеелитов золоторудных месторождений, согласно [7], обусловлена присутствием битумоидов до 0,01 мас. %; шеелиты со светло-желтой или серовато-желтоватой окраской в золоторудных рудах образуются при наложении продуктивной минерализации с самородным золотом, при этом органическое вещество в шеелите с красноватой окраской «выгорает» при осаждении (=восстановлении) Аи из растворов. Следовательно, более светлая окраска шеелитов Улуг-Саирского рудопроявления, в отличие от красноватых, жёлто-оранжевых окрасок шеелитов Хаак-Саирского рудопроявления, возможно, связана с закономерностями, выявленными Э.М. Спиридоновым с соавторами [7].

Состав шеелита Улуг-Саирского рудопроявления близок к стехиометрическому, содержания (мас. %): CaO 18,64–18,81; SrO 0,11–0,14, WO₄ 80,25–80,67 и MoO₃ 0,00–0,06. Суммарные содержания РЗЭ в шеелите составляют 493–1009 г/т, Y – от 130 до 278 г/т (таблица). Шеелит обогащён лёгкими и средними РЗЭ: Σ (La–Nd)_N = 457–950; Σ (Sm–Ho)_N = 2287–4590; Σ (Er–Lu)_N = 183–388. Кроме того, отмечаются ярко выраженные отрицательные Еи-аномалии (Eu/Eu* = 0,003–0,004) (рисунок, δ).

Результаты исследования и их обсуждение

Э.М. Спиридоновым с соавторами [7] было показано, что геохимический состав шеелита является индикатором глубинности плутоногенных месторождений золото-кварцевой формации. В частности, величина Sr/Мо в шеелите гипабиссальных месторождений составляет > 2000, мезобиссальных – 20–40, абиссальных – < 10. С ростом глубинности в шеелите увеличивается

концентрация Y и РЗЭ. В шеелите гипабиссальных месторождений Au из РЗЭ преобладают Eu и Sm; мезобиссальных – Nd, Sm и Gd; абиссальных – Nb, Sm, Ce и Gd.

В Хаак-Саирском гипабиссальном рудопроявлении (Р ~ 0,5 кбар; ~ 1,5 км) из РЗЭ преобладают Eu, Ce и La, величина Sr/ Мо = 3586–6390 (среднее 4988), Улуг-Саирском гипо-мезоабиссальном рудопроявлении (P ~ 0,9–1,0 кбар; ~ 2,7–3,0 км) – Nd, Gd, Sm и Dy, Sr/Mo = 24-55 (среднее = 36,92). В более глубинных улугсаирских шеелитах содержание РЗЭ и У характеризуется относительно хааксаирских повышенными содержаниями (в среднем): Pr и Yb 4-5 раз, Tm - 7 pas, Dy - 15 pas, Ho - 21 pas, Er -26 раз, Sm – 38 раз, Gd и Tb – раз, а также Y – 6 раз (таблица). Типохимизм шеелитов рудопроявлений АМРУ, таким образом, соответствует фациям глубинности их формирования. В целом с ростом глубинности формирования руд наблюдается максимальное повышение концентраций средних лантаноидов.

Как видно из спайдерграмм, распределение РЗЭ в хааксаирских шеелитах схоже со спектрами РЗЭ месторождения Бестюбе гипабиссальной фации глубинности (рисунок, *a*). По характеру распределения и уровню накопления РЗЭ улугсаирские шеелиты соответствуют шеелитам месторождений мезобиссальной фации глубиности (рисунок, *б*). Спектры РЗЭ улугсаирских шеелитов характеризуются наличием отрицательных Еu-аномалий, а хааксаирских – положительными Eu-аномалиями (рисунок), что предполагает различия их физико-химических условий формирования.

Интерпретация Еu-аномалии в рудно-магматических системах очень сложна и должна учитывать физико-химические условия их формирования. Eu, в отличие от других РЗЭ, при окислительно-восстановительных (red-ox) условиях, характерных для магматического процесса, присутствует в кислых алюмосиликатных расплавах в двух валентных формах – Eu^{3+} и Eu^{2+} , в то время как для остальных РЗЭ преобладающей формой в расплаве является REE³⁺ [8; 10]. При изучении системы «водный хлоридный флюид – гранитный расплав» было установлено, что знак и величина Еи-аномалии во флюиде существенно зависит от концентрации Cl во флюиде и от соотношения Eu³⁺/Eu²⁺ в расплаве (от redох-потенциала) и меняется в зависимости от давления флюида и степени открытости системы [4]. В закрытых условиях для пер-

вых, наиболее глубинных стадий (3 кбар) дегазации обогащенных хлором флюида, установлено появление относительно слабой отрицательной Еи-аномалии (в спектре РЗЭ). Понижение давления вызывает уменьшение концентрации Cl во флюиде, что приводит сначала к исчезновению отрицательной Еи-аномалии, а затем к появлению и росту положительной Еи-аномалии. В открытых условиях системы, при полном или частичном удалении флюида из магмы, инверсия знака Eu-аномалии происходит при более высоких давлениях по сравнению с закрытой системой. В целом при повышении концентрации Cl во флюиде наблюдается смена знака Еи-аномалии на отрицательную при более низких давлениях [4].

Итак, Еu-аномалии могут свидетельствовать о характеристиках red-охпотенциала флюида. Отрицательная Еu-аномалия в некоторых случаях, как, например, в улугсаирских шеелитах, может указывать на кристаллизацию минералов из восстановленных флюидов, в условиях высоких давлений и/или при высоких концентрациях Cl во флюиде при относительно низких давлениях.

Одни месторождения Au вулканогенно-плутоногенной гидротермальной формации по особенностям состава близки к вулканогенным с селенидно-теллуридной минерализацией, с Те блёклыми рудами, колуситом, аурипигментом, киноварью (Алдан – Куранах, Лебединое), другие (Забайкалье – Дарасун и др.) имеют промежуточные характеристики [6], т.е. близки к плутоногенным гидротермальным. На тех и других проявлена отчётливая латеральная и вертикальная минеральная зональность. По минералого-геохимическим и геологическим особенностям объекты АМРУ близки к плутоногенно-гидротермальным.

Плутоногенно-гидротермальные месторождения Аи формируются в условиях закрытой системы, при относительно стабильных физико-химических условиях [6]. Месторождения Аи вулканогенно-плутоногенной гидротермальной золото-кварцевой формации формируются в условиях полуоткрытых систем, для которых характерны очень широкие вариации физико-химических параметров рудообразующего флюида, а также концентрации солей и газов [5]. Видимо, месторождения Аи вулканогенноплутоногенной гидротермальной формации, наиболее близкие к плутоногенным гидротермальным месторождениям, формируются в более закрытых условиях, чем

объекты, близкие к вулканогенным, в которых чередование открытия и закрытия тектонических трещин наиболее ярко выражено. В месторождениях Аи вулканогенноплутоногенной гидротермальной формации с увеличением глубины формирования руд полуоткрытые условия становятся более закрытыми. При этом большую роль играет состав флюидов.

поздних жил Хаак-Саирского Для и Улуг-Саирского рудопроявлений характерно наличие барита, а для шеелитов из более ранних жил характерны низкие концентрации Ва (0,07–1,56 г/т). Вместе с тем в плутоногенных месторождениях золотокварцевой формации барит не встречается. По данным [7] для шеелитов из этих месторождений независимо от глубины формирования месторождений в среднем отмечается примесь Ва 200-220 г/т. Возможно, концентрации Ва в шеелите являются одним из критериев отличия месторождений Аи плутоногенно-гидротермальной золото-кварцевой формации от вулканогенно-плутоногенной гидротермальной золото-кварцевой формации (низкие концентрации Ва в шеелите до 10 г/т) (рисунок, e, z).

Заключение

Сравнительный анализ РЗЭ в шеелитах рудопроявлений Au вулканогенно-плутоногенной гидротермальной золото-кварцевой формации Западной Тувы с различными фациями глубинности формирования руд показал информативность типохимических особенностей шеелитов для определения их фации глубинности и формационной принадлежности.

Значительные величины европиевых аномалий в шеелитах Хаак-Саирского (Eu/ Eu* = 3,06–15,23) и Улуг-Саирского (Eu/ Eu* = 0,003–0,004) рудопроявлений свидетельствуют о кристаллизации шеелитов из восстановленных флюидов. Отрицательная Eu-аномалия в шеелите Улуг-Саирского рудопроявления, возможно, связана с физико-химическими условиями минералообразования, прежде всего – с повышенной солёностью флюидов (солёность растворов в жиле № 18 = 6–9,6 мас. % NaCl-экв) и давлением ($P \sim 0,9-1,0$ кбар; ~ 2,7–3 км).

Авторы статьи искренне благодарят д.г.-м.н. В.И. Лебедеву, д.г.-м.н. В.В. Зайкову за все замечания и пожелания к данной работе, которые позволили улучшить её форму и содержание.

Список литературы

 Анкушева Н.Н., Зайков В.В. Физико-химические условия формирования золото-кварцевых жил Улуг-Саирского месторождения (Западная Тува) // Металлогения древних и современных океанов–2009. Модели рудообразования и оценка месторождений. – Миасс: ИМин УрО РАН, 2009. – С. 127–135.

2. Гусев А.И. Особенности поведения лантаноидов в шеелитах некоторых месторождений Горного Алтая // Успехи современного естествознания. – 2014. – № 3. – С. 64–69.

3. Кужугет Р.В. Золото-теллуридное оруденение Алдан-Маадырского рудного узла (Западная Тува): минералогогеохимические особенности руд и условия их образования: Автореф. дис. ... к.г.-м.н. . Новосибирск, 2014. – 20 с.

4. Луканин О.А., Дернов-Пегарев В.Ф. Основные факторы, определяющие появление европиевой аномалии во флюидах, образующихся при дегазации гранитных магм, вызванной снижением давления // Вестник Отделения наук о Земле РАН, 2009. № 1(27). – [Электронный ресурс]. Режим доступа: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2009/informbul-1_2009/magm-24.pdf, свободный.

5. Прокофьев В.Ю. Геохимические особенности рудообразующих флюидов гидротермальных месторождений золота различных генетических типов: По данным исследования флюидных включений // Автореф. дис. ... докт. геолмин. наук. – Ин-т геохимии им. А.П. Виноградова. – Иркутск, 1996. – 44 с.

6. Спиридонов Э.М. Обзор минералогии золота в ведущих типах Аи минерализации // Золото Кольского полуострова и сопредельных регионов. Труды Всероссийской (с международным участием) научной конференции, посвященной 80-летию Кольского НЦ РАН. Апатиты, 26–29 сент. 2010 г. Апатиты, Изд-во К & М, 2010, С. 143–171.

7. Спиридонов Э.М., Соколова Н.Ф., Назьмова Г.Н., Шалаев Ю.С. Типохимизм шеелита разноглубинных плутоногенных гидротермальных месторождений золота // Доклады РАН. – 1999. – Т. 364, № 3. – С. 363–365.

8. Drake M.J. The oxidation state of europium as an indicator of oxygen fugacity $\prime\prime$ Geochim. Cosmochim. Acta. - 1975. – V. 39. – P. 55–64.

9. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. Eds. A.D. Saunders, M.J. Norry. Geol. Soc. London. Spac. Publ. 1989. V. 42. – P. 313–346.

10. Wilke M. Behrens H. The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melts on oxygen fugacity // Contrib. Mineral. Petrol. – 1999. – V. 137. – P. 102–114.