УДК 628.316.12 ЭНЕРГОЭФФЕКТИВНОСТЬ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ ОРГАНИЧЕСКИХ МИКРОПОЛЛЮТАНТОВ УФ ИЗЛУЧЕНИЕМ ЭКСИЛАМПЫ

Матафонова Г.Г., Батоев В.Б.

ФГБУН «Байкальский институт природопользования» СО РАН, Улан-Удэ, e-mail: ngal@yandex.ru

В данной работе рассчитаны и сопоставлены энергозатраты на очистку деионизованной (ДВ), синтетической (СТВ), природной (ПВ) и сточной воды (СТВ) от современных органических микрополлютантов методами прямого фотолиза (УФ) и облучением в присутствии пероксида водорода (УФ/H₂O₂) с использованием KrCl-эксилампы (222 нм). В качестве модельных микрополлютантов взяты пара-хлорбензойная кислота (п-XБК), атразин (АТЗ), йогексол (ЙГС), безафибрат (БЗФ), бисфенол А (БФА) и карбамазепин (КБЗ). Наибольшие энергозатраты установлены для прямого фотолиза п-XБК и КБЗ в ДВ и СТВ (13–17 кВт-ч/м³). Для достижения эффективности очистки 90% методом УФ/H₂O₂ требовалось менее 4,4 кВт-ч/м³. При этом энергозатраты на деструкцию микрополлютантов с высокими величинами константы скорости реакции с гидроксильными радикалами (п-XБК, БЗФ, БФА и КБЗ) прямым УФ облучением значительно снижались в ПВ и СВ, что указывает на важную роль фотосенсибилизации растворенного органического вещества. Существенного повышения энергоэффективности метода УФ/H₂O₂ для очистки СВ по сравнению с прямым фотолизом не выявлено. Несмотря на относительно низкие дозы УФ излучения эксилампы для удаления 90% вещества, соответствующие энергозатраты превышают установленные ранее для ртутной лампы низкого давления в силу низкого КПД эксилампы.

Ключевые слова: органические микрополлютанты, деструкция, очистка природных и сточных вод, KrClэксилампа, энергозатраты

ENERGY EFFICIENCY OF PURIFICATION OF NATURAL WATER AND WASTEWATER FROM ORGANIC MICROPOLLUTANTS USING UV RADIATION OF EXCILAMP

Matafonova G.G., Batoev V.B.

Baikal Institute of Nature Management SB RAS, Ulan-Ude, e-mail: ngal@yandex.ru

In this study, the energy requirements for removal of modern organic micropollutants from deionized water (DW), synthetic water (SW), lake water (LW) and a wastewater (WW) by direct photolysis (UV) and ultraviolet/ hydrogen peroxide (UV/H₂O₂) methods using a KrCl excilamp (222 nm) were calculated and compared. Parachlorobenzoic acid (*p*CBA), atrazine (ATZ), iohexol (IHL), bezafibrate (BZ), bisphenol A (BPA) and carbamazepine (CBZ) were taken as model micropollutants. The highest energy requirements were shown for direct photolysis of *p*CBA and CBZ in DW and SW (13–17 kWh/m³). The method UV/H₂O₂ required less than 4,4 kWh/m³ for attaining 90% purification efficiency. The energy demands for destruction of micropollutants with high values of rate constants for reaction with hydroxyl radicals (*p*CBA, BZ, BPA and CBZ) by direct UV treatment were significantly decreased in LW and WW, indicating an important role of photosensitized dissolved organic matter. No substantial enhancement of energy-efficiency compared to direct UV was observed for UV/H₂O₂ treatment of WW. Despite the low UV doses for 90% removal, the low efficiency of excilamp resulted in higher energy consumptions than reported previously for low pressure mercury lamp.

Keywords: organic micropollutants, destruction, natural water and wastewater treatment, KrCl excilamp

За последнее десятилетие проблема загрязнения водных экосистем микрополлютантами (МП) привлекла большое внимание зарубежных исследователей, но остается практически неисследованной в России [1, 2]. Термин «микрополлютанты» («micropollutants») охватывает неорганические и органические загрязняющие вещества, присутствующие в воде на уровне от 1 нг до 1 мкг/л [8, 13, 14]. В настоящее время основными органическими МП признаны лекарственные, косметические и гигиенические средства (PPCP – Pharmaceuticals and Personal Care Products) и вещества, вызывающие эндокринные нарушения (EDCs - Endocrine Disrupting Compounds).

Хотя органические МП присутствуют природных и хозяйственно-бытовых сточных водах при относительно низких концентрациях, особое беспокойство вызывают их хронические или синергичные токсические эффекты при постоянном поступлении в водные экосистемы в виде смесей сложного состава. Для их удаления на этапе доочистки сточных вод в мировой практике применяются комбинированные окислительные технологии (AOT - Advanced Oxidation Technologies), в которых МП окисляются высокореакционными гидроксильными радикалами ('ОН) с величинами константы скорости $(k_{\text{OH}}) > 5 \cdot 10^9 \text{ M}^{-1} \text{s}^{-1} [5].$ Как известно, 'ОН можно генерировать при

облучении воды УФ светом в присутствии окислителей, например пероксида водорода (Н₂O₂). Современные безртутные эксилампы зарекомендовали себя как эффективные и экологобезопасные источники квазимонохроматического УФ излучения для разложения ряда органических загрязняющих веществ (фенолов, красителей и гербицидов) и рассматриваются в качестве альтернативы традиционным ртутным лампам [12]. Между тем величина энергетических затрат, как известно, является ключевым параметром при оценке эффективности того или иного метода очистки сточных вод. В данной ра-

боте установлены кинетические закономерности деструкции МП в различных водных матрицах УФ излучением KrCl эксилампы без (УФ) и в присутствии пероксида водорода (УФ/Н2О2) и оценены величины соответствующих энергозатрат для очистки воды на 90%.

Материалы и методы исследования

Для экспериментов были взяты модельные МП фирмы «Sigma-Aldrich» с различными величинами $k_{\rm OH}$ (табл. 1). Данные соединения являются одними из наиболее распространенных в настоящее время органических МП, широко применяющихся в промышленности, сельском хозяйстве и медицине.

Таблица 1

Общие характеристики исследуемых органических микрополлютантов

В качестве источника УФ-излучения использована KrCl-эксилампа (ООО «Эксилампы», г. Томск), максимум излучения которой (222 нм) находится в коротковолновой области поглощения исследуемых соединений. Согласно актинометрическим данным. интенсивность палаюшего излучения составила 0,64 мВт/см². Каждый МП вносили в очищаемую воду (C₀ = 1 мкМ, pH = 8,0) и облучали при постоянном перемешивании на магнитной мешалке (IKA, 350 об/мин) без или в присутствии H_2O_2 ($C_0 = 0,2$ мМ) в статическом фотореакторе. В качестве водных матриц были взяты деионизованная вода (ДВ), синтетическая вода (СТВ), природная вода (ПВ) и очищенная хозяйственно-бытовая сточная вода (СВ). СТВ состояла из растворенного в ДВ стандартного органического вещества (Pony Lake Fulvic Acid, IHSS). После отбора пробы ПВ и СВ были отфильтрованы через фильтры из регенерированной целлюлозы (Ø 0,45 мкм) и хранились при 4°С. Содержание растворенного органического углерода в СТВ, ПВ и СВ определяли с помощью TOC-анализатора Shimadzu ТОС-V (Япония) и составило 1,1; 0,9 и 5,2 мгС/л, соответственно. Остаточную концентрацию МП в процессе деструкции определяли методом ВЭЖХ с УФдетектором на хроматографе Ultimate®3000 (Dionex, США). Элюирование осуществляли в изократическом режиме со скоростью 0,8 мл/мин на колонке Nucleosil 100-5 С18 (Macherey-Nagel, Германия) с использованием смеси метанола и фосфатного буфера в соотношении 55:45 (об. %). Йогексол элюировали при соотношении МеОН:Н₃РО₄ 5:95 (об. %). Рабочие растворы МП были приготовлены в ДВ качества Milli Q (18,2 MΩ[•]CM, Advantage A10 system, Millipore, Fepмания). Статистическую обработку данных проводили с использованием пакета STATISTICA 6.0.

Дозу УФ-излучения определяли как произведение средней интенсивности излучения в облучаемом объеме воды и продолжительности облучения. В свою очередь, величину средней интенсивности излучения рассчитывали с использованием интегрированной формы закона Бугера – Ламберта – Бера как произведение интенсивности падающего на поверхность раствора излучения и поправочного коэффициента, учитывающего поглощение всех растворенных компонентов водной матрицы [9]. На основе УФ-доз, необходимых для разложения 90% вещества, далее рассчитаны энергетические затраты (в кВт·ч/м³) на очистку воды УФ-облучением без и в присутствии Н₂О₂. Для комбинированной обработки расчеты энергии произведены с учетом потребленного окислителя из расчета 10 кВт ч на производство 1 кг Н₂О₂[9].

Результаты исследования и их обсуждение

Из экспериментальных линейных зависимостей $\ln(C/C_0)$ от дозы УФ-излучения (мДж/см²) в различной водной матрице были рассчитаны константы скорости деструкции МП по первому порядку (k_1) в единицах дозы (табл. 2).

Максимальные скорости фотолиза в ДВ и СТВ установлены для АТЗ, максимальная величина молярного коэффициента поглощения которого совпадает с максимумом излучения KrCl-эксилампы. В модельном растворе (ДВ), исключающем влияние фоновой матрицы, КБЗ прямым фотолизом практически не разлагается. Прямой фотолиз микрополлютантов, имеющих высокие значения k_{OH} , в ПВ и СВ характеризовался значительно более высокой скоростью деструкции по сравнению с ДВ и СТВ (табл. 2). Так, величины k₁ для БФА и КБЗ в ПВ и СВ на 1-2 порядка выше, чем в ДВ и СТВ. Полагаем, что этот эффект вызван фотосенсибилизированным окислением МП в присутствии фонового растворенного органического вещества ПВ и СВ, как источника ОН. Известно, что при возбуждении природных фотосенсибилизаторов (растворенного органического вещества (POB), NO_3^- , NO_2^- и др.), помимо переходов РОВ в возбужденное триплетное состояние, также генерируются активные формы кислорода, в том числе ОН, которые, в свою очередь, эффективно окисляют разлагаемые органические поллютанты [6]. Очевидно, что в ПВ и СВ основным источником ОН' является РОВ в силу низкого содержания NO₃ (6,3 мг/л), NO₂ (0,074 мг/л) и NH₄⁺ (<0,2 мг/л). Скорость разложения п-ХБК – ловушки ОН - в ПВ и СВ также до одного порядка выше, чем в ДВ и СТВ (табл. 2). Этот эффект для СТВ, содержащей в качестве РОВ только стандартное органическое вещество (фульвокислоты), нами не выявлен.

Таблица 2

Константы скорости деструкции микрополлютантов ($k_1 \cdot 10^{-2}$, см²/мДж) УФ излучением KrCl-эксилампы в деионизованной (ДВ), синтетической (СТВ), природной (ПВ) и сточной (СВ) воде C₀ = 1 мкМ, pH = 8,0, *p* = 0,95

Микрополлютант	Водная матрица					
	ДВ	CTB	ПВ	CB		
п-ХБК	$0,1 \pm 0,006$	$0,08 \pm 0,006$	$0,5 \pm 0,02$	$1,0 \pm 0,03$		
Атразин	$0,8 \pm 0,05$	$0,8 \pm 0,06$	$1,0 \pm 0,07$	$1,3 \pm 0,06$		
Йогексол	$0,4 \pm 0,01$	$0,4 \pm 0,01$	$0,9 \pm 0,03$	$1,0 \pm 0,02$		
Безафибрат	$0,3 \pm 0,015$	$0,4 \pm 0,02$	$1,1 \pm 0,10$	$1,8 \pm 0,10$		
Бисфенол А	$0,3 \pm 0,01$	$0,2 \pm 0,006$	$6,2 \pm 0,45$	$18,0 \pm 0,6$		
Карбамазепин	$0,08 \pm 0,001$	$0,1 \pm 0,006$	$0,9 \pm 0,02$	$1,7 \pm 0,03$		

Отсутствие измеримой генерации ОН• при обработке СТВ может быть обусловлено низкой фотосенсибилизирующей активностью данных фульвокислот при 222 нм в силу низкого содержания ароматических структур [4].

Таким образом, кинетика фотолиза МП, имеющих высокие величины k_{OH} (п-ХБК, БФА, КБЗ, БЗФ) в реальной воде (ПВ и СВ) характеризуется максимальными скоростями деструкции. Поскольку АТЗ и ЙГС отличаются более низкой реакционной способностью к окислению ОН, существенного увеличения скорости их разложения при переходе от модельной к реальной воде не наблюдалось. Полученные результаты позволяют заключить, что прямое облучение данных МП КrCl-эксилампой в природной и сточной воде является эффективным комбинированным окислительным процессом, обеспечивая их фотосенсибилизированное окисление в присутствие POB.

В присутствии H_2O_2 скорости деструкции МП, легко окисляющихся ОН[•] (п-ХБК, БФА, КБЗ, БЗФ), в ДВ, СТВ и ПВ выше, чем при прямом фотолизе в тех же водных матрицах (табл. 3).

Так, в ДВ константы скорости деструкции (k_2) до одного порядка выше, чем найденные при прямом фотолизе. Напротив, скорости УФ и УФ/H₂O₂ деструкции МП в СВ, в которой генерирующиеся ОН связываются с максимальной скоростью, различались незначительно. В пределах одинаковой водной матрицы кинетика деструкции АТЗ и ЙГС, имеющих более низкие величины $k_{\rm OH}$, без и в присутствии окислителя характеризовалась близкими значениями k_1 и k_2 . Сравнительный анализ эффективности УФ и УФ/H₂O₂ методов для разложения АТЗ показал, что во всех водных матрицах доминирующим фактором является прямой фотолиз.

В целом внесение пероксида приводило к снижению доз УФ излучения, необходимых для разложения 90% микрополлютанта. При этом различия между дозами для УФ и УФ/ H_2O_2 обработки различных водных матриц уменьшались в ряду: ДВ > CTB > ПВ > CB. На основе УФ-доз рассчитаны энергетические затраты на очистку воды облучением без и в присутствии окислителя (табл. 4).

Применение комбинированного метода обеспечивает снижение величин электроэнергии до одного порядка в зависимости от типа водной матрицы и разлагаемого микрополлютанта. В частности, для очистки ДВ и СТВ комбинированным методом (УФ/H₂O₂) величины требуемой электроэнергии до одного порядка ниже, чем при прямом облучении. Прямой фотолиз (кроме АТЗ) в ДВ и СТВ отличается достаточно высокими энергозатратами. Поскольку СВ имеет высокое поглощение при 222 нм для обеспечения ее очистки от исследуемых МП на 90% комбинированным

Таблица 3

Константы скорости деструкции микрополлютантов ($k_2 \cdot 10^{-2}$, см²/мДж) при УФ/H₂O₂ обработке деионизированной (ДВ), синтетической (СТВ), природной (ПВ) и сточной (СВ) воды C₀ = 1 мкМ, [H₂O₂]₀ = 0,2 мМ, pH = 8,0, *p* = 0,95

Микрополлютант	Водная матрица					
i i i i i i i i i i i i i i i i i i i	ДВ	СТВ	ПВ	CB		
п-ХБК	$1,0 \pm 0,04$	$0,7 \pm 0,03$	$0,9 \pm 0,04$	$1,1 \pm 0,03$		
Атразин	$1,1 \pm 0,08$	$1,0 \pm 0,08$	$1,2 \pm 0,10$	$1,5 \pm 0,07$		
Йогексол	$0,9 \pm 0,02$	$0,7 \pm 0,02$	$0,9 \pm 0,03$	$1,3 \pm 0,03$		
Безафибрат	$1,5 \pm 0,11$	$0,9 \pm 0,07$	$1,6 \pm 0,10$	$1,9 \pm 0,10$		
Бисфенол А	$1,5 \pm 0,06$	$0,9 \pm 0,03$	$3,4 \pm 0,25$	$16,0 \pm 0,5$		
Карбамазепин	$1,5 \pm 0,05$	$0,8 \pm 0,02$	$1,4 \pm 0,05$	$2,0 \pm 0,03$		

Таблица 4

Энергетические затраты (кВт·ч/м³) для удаления 90% микрополлютантов из деионизованной (ДВ), синтетической (СТВ), природной (ПВ) и сточной воды (СВ). [H₂O₂]₀ = 0,2 мМ, pH = 8,0

Микрополлютант	ДВ		СТВ		ПВ		СВ	
	УΦ	$Y\Phi/H_2O_2$	УΦ	$Y\Phi/H_2O_2$	УΦ	УФ/H ₂ O ₂	УΦ	$Y\Phi/H_2O_2$
п-ХБК	13	1,4	17	2,1	3,0	1,8	4,4	4,4
Атразин	1,7	1,3	1,7	1,5	1,5	1,4	3,5	3,4
Йогексол	3,3	1,6	3,4	2,1	1,7	1,8	4,4	3,9
Безафибрат	4,3	0,9	3,4	1,6	1,4	1,0	2,5	2,6
Бисфенол А	4,3	0,9	6,8	1,6	0,2	0,5	0,2	0,4
Карбамазепин	16,4	1,0	13,7	1,8	1,7	1,2	2,6	2,5

26

методом необходимы максимальные величины электроэнергии, сравнимые с энергозатратами при прямом облучении, без участия Н₂О₂. Более низкие величины энергозатрат (<1,0 кВт ч/м³) ранее сообщались для очистки поверхностной природной воды (4,0 мгС/л) от АТЗ, БЗФ и КБЗ ртутной лампой низкого и среднего давления в присутствии 10 мг/л Н₂О₂ [7]. Вместе с тем для деструкции 90% КБЗ в СВ эксилампой в присутствии окислителя требовались более низкие энергозатраты (2,5 кВт·ч/м³), чем установленные ранее для 90%-ной очистки СВ от КБЗ $(C_0 = 2,32 \text{ мкг/л или } 0,01 \text{ мкM})$ облучением ртутной лампой среднего давления в присутствии H₂O₂ (4 кВт·ч/м³) [10].

Выявлено, что комбинированный метод $(Y\Phi/H_2O_2)$ для очистки ПВ от п-ХБК, БЗФ и КБЗ является более энергоэффективным, чем прямое облучение. Минимальные энергозатраты установлены для разложения БФА прямым облучением ПВ и CB ($0,2 \text{ кBt} \cdot \text{ч/м}^3$). Тем не менее полученные значения для деструкции п-ХБК и АТЗ в ПВ (0,9 мгС/л) на 1,02 и 0,4 кВт ч/м³ выше, чем установленные ранее для разложения тех же соединений в воде Цюрихского озера (Швейцария) (1,3 мгС/л) ртутной лампой низкого давления при той же исходной концентрации H,O, [9]. Энергозатраты для деструкции п-ХБК в СВ (5,2 мгС/л) эксилампой приблизительно в 2 раза выше, чем найденная этими же авторами для очистки СВ (3,9 мгС/л) от п-ХБК при тех же условиях. Это обусловлено низким КПД эксилампы (5%) по сравнению с КПД ртутной лампы низкого давления (30%) [15]. Тем не менее величины электроэнергии для очистки ПВ от п-ХБК (1,8 кВт·ч/м3) комбинированным методом с помощью эксилампы были сравнимыми с последними, рассчитанными ранее для очистки воды озера Йонсватнет (Норвегия) (1,28 кВт ч/м3, 3 мгС/л) и озера Грайфензее (Швейцария) (1,92 кВт ч/м³, 3,1 мгС/л) ртутной лампой низкого давления при той же исходной концентрации окислителя [9]. При сравнении энергозатрат для ртутных ламп низкого среднего и низкого давления и лампы диэлектрического барьерного разряда (ДБД), излучающей около 240 нм, ранее установлено, что энергия, необходимая для деструкции 90% AT3 ($C_0 = 10$ мкг/л или 0,046 мкМ) при 5 мг/л H₂O₂ в воде реки Мёз составила 1,87; 0,73 и 2,17 кВт ч/м³ для ртутной лампы среднего давления, ртутной лампы низкого давления и ДБД-лампы соответственно [11]. Нами получены более низкие величины энергозатрат, необходимых для деструкции АТЗ в ПВ (1,4 кВт·ч/м³, 0,9 мгС/л). Принимая, что величины потребляемой электроэнергии для удаления 90% загрязняющего вещества $\leq 2,65$ кВт·ч/м³ являются экономически целесообразными [3], можно заключить, что комбинированный метод с применением KrCl-эксилампы энергоэффективен для очистки природной воды с невысоким содержанием POB. Комбинированный метод и метод прямой УФобработки (в силу сравнимых энергозатрат) также энергоэффективны для очистки CB от БЗФ, БФА и КБЗ. Полагаем, что использование эксиламп с более высоким КПД позволит снизить энергозатраты и обеспечить энергоэффективность очистки сточных вод с высоким содержанием POB.

Список литературы

1. Аджиенко Г.В. Органические микрозагрязнители – опасность для живых организмов / Г.В. Аджиенко, Е.В. Веницианов // Вода: химия и экология. – 2015. – № 2. – С. 31–40.

2. Гетьман М.А. Лекарственные средства в окружающей среде / М.А. Гетьман, И.А. Наркевич // Ремедиум. – 2013. – № 2. – С. 50–54.

3. Bolton J.R., Cater S.R. Homogenous photodegradation of pollutants in contaminated water: An introduction. Chapter 33. In: Surface and aquatic environmental photochemistry. Helz G.R., Zepp R.G., Crosby D.G., Eds., CRC-Press, Boca Raton, FL, 1994. p. 476.

4. Brown A. Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica / A. Brown, D.M. McKnight, Y.P. Chin, E.C. Roberts, M. Uhle // Mar. Chem. – 2004. – Vol. 89. – P. 327–337.

5. Buxton G.V. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution / G.V. Buxton, C.L. Greenstock, W.P. Helman, W.P. Ross // J. Phys. Chem. Ref. Data. – 1988. – Vol. 17. – P. 513–886.

6. Dong M.M. Photochemical formation of hydroxyl radical from effluent organic matter / M.M. Dong, F.L. Rosario-Ortiz // Environ. Sci. Technol. – 2012. – Vol. 46. – P. 3788–3794.

7. IJpelaar G.F. Comparison of low pressure and medium pressure UV lamps for UV/H2O2 treatment of natural waters containing micro pollutants / G.F. IJpelaar, D.J.H. Harmsen, E.F. Beerendonk, R.C. van Leerdam, D.H. Metz, A.H. Knol, A. Fulmer, S. Krijnen // Ozone Sci. Eng. – 2010. – Vol. 32, № 5. – P. 329–337.

8. Joss A. Are we about to upgrade wastewater treatment for removing organic micropollutants? / A. Joss, H. Siegrist, T.A. Ternes // Wat. Sci. Technol. – 2008. – Vol. 57. – P. 251–255.

9. Katsoyiannis I.A. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O_3/H_2O_2 and UV/H_2O_2/I.A. Katsoyiannis, S. Canonica, U. von Gunten // Water Res. – 2011. – Vol. 45. – P. 3811–3822.

10. Köhler C. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment / C. Köhler, S. Venditti, E. Igos, K. Klepiszewski, E. Benetto, A. Cornelissen // J Hazard. Mater. – 2012. – Vol. 239–240. – P. 70–77.

11. Lekkerkerker-Teunissen K. Pilot plant results with three different types of UV lamps for advanced oxidation / K. Lekkerkerker-Teunissen, A.H. Knol, J.G. Derks, M.B. Heringa, C.J. Houtman, C.H.M. Hofman-Caris, E.F. Beerendonk, A. Reus, J.Q.J.C. Verberk, J.C. van Dijk // Ozone Sci. Eng. – 2013. – Vol. 35, № 1. – P. 38–48.

12. Matafonova G. Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation / G. Matafonova, V. Batoev // Chemosphere. – 2012. – Vol. 89. – P. 637–647.

13. Schwarzenbach R.P. The challenge of micropollutants in aquatic systems / R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli // Science. – 2006. – Vol. 313, № 5790. – P. 1072–1077.

14. Ternes T.A. Human pharmaceuticals, hormones and fragrances. The challenge of micropollutants in urban water management / T.A. Ternes, A. Joss. – London: IWA Publishing, 2006. – 468 p.

15. US EPA, 2006. EPA 815-R-06-007, Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule.