CHEMICAL SCIENCES (02.00.00)

УДК 546.3

ЗАКОНОМЕРНОСТИ ОБРАЗОВАНИЯ ТРИГОНАЛЬНЫХ ТРОЙНЫХ МОЛИБДАТОВ $M_{s}LnHf(MoO_{4})_{6}$ В СИСТЕМАХ $M_{s}MoO_{4}-Ln_{s}(MoO_{4})_{3}-Hf(MoO_{4})_{5}$ (M = K, Tl, Rb; Ln = La-Lu)

^{1,2}Базарова Ж.Г., ¹Чимитова О.Д., ¹Гроссман В.Г., ^{1,2}Базаров Б.Г., ^{1,2}Тушинова Ю.Л.

¹Байкальский институт природопользования СО РАН, Улан-Удэ, e-mail: jbaz@binm.bscnet.ru; ²ФГБОУ ВО «Бурятский государственный университет», Улан-Удэ, e-mail: bazbg@rambler.ru

При исследовании субсолидусного строения тройных солевых систем $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$ (M = K, Rb, Tl) методом рентгенофазового анализа выявлено образование обширного семейства тригональных тройных молибдатов $M_3LnHf(MoO_4)_6$. Настоящая статья посвящена рассмотрению закономерностей образования этих соединений. В работе прослежено влияние размерного и структурного факторов на формирование указанных фаз. Анализ результатов исследований показывает, что молибдаты состава $M_5LnHf(MOO_4)_6$ (M = K, Ln = Sm-Lu; M = Tl, Rb, Ln = Ce-Lu) образуются в системах, если разница в ионных радиусах катионов находится в пределе 0,68 $\leq rM^*-rLn^{3+} \leq 0,86$. Изучение систем $Cs_2MoO_4-Ln_2(MoO_4)_3$ -Hf($MoO_4)_2$ показало, что при возрастании Δr интервал существования соединений рассматриваемого состава не увеличивается.

Ключевые слова: молибдат, калий, таллий, рубидий, лантаноид, гафний, синтез, кристаллическая структура, свойство

REGULARITIES OF TRIGONAL TRIPLE MOLYBDATES FORMATION $M_5LnHf(MoO_4)_6$ IN THE SYSTEMS $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$ (M = K, Tl, Rb; Ln = La–Lu)

^{1,2}Bazarova Zh.G., ¹Chimitova O.D., ¹Grossman V.G., ^{1,2}Bazarov B.G., ^{1,2}Tushinova Yu.L.

¹Baikal Institute of Nature Management of Siberian Branch of the Russian Academy of Sciences,

Ulan-Ude, e-mail: jbaz@binm.bscnet.ru;

²Buryat State University, Ulan-Ude, e-mail: bazbg@rambler.ru

During the investigation of ternary salt systems $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$ by XRD analysis the wide family of trigonal triple molybdates $M_5LnHf(MoO_4)_6$ (M=K, Rb, Tl) was found. The present work shows the regularities of formation of these molybdates with formulated composition $M_5LnHf(MoO_4)_6$. The influence of size and structural factors on phase obtaining with given composition was presented. Analysis of research results demonstrates that molybdates with composition $M_5LnHf(MoO_4)_6$ (M=K, Ln = Sm-Lu; M = Tl, Rb, Ln = Ce-Lu) are formed in the systems, where difference in ionic radii of the cations is within $0,68 \le rM^*-Ln^{3+} \le 0,86$. Study of the $Cs_2MOO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_5$ systems reveal that increasing Δr interval of existence of compounds is not increased. The results of this study allowed to establish the role of size and structural factors during the obtaining of compounds.

Keywords: molybdate, potassium, thallium, rubidium, lanthanide, hafnium, synthesis, crystal structure, properties

При исследовании систем M_2MoO_4 -Ln₂(MoO₄)₃-Hf(MoO₄)₂ (M = K, Tl, Rb; Ln = La-Lu) [2, 6, 10] методами физико-химического анализа было выявлено образование тройных молибдатов формульного состава $M_5LnHf(MoO_4)_6$ (5:1:2). Настоящая статья посвящена рассмотрению закономерностей образования этих соединений. В работе прослежено влияние размерного и структурного факторов на формирование указанных фаз.

Материалы и методы исследования

Синтез образцов осуществляли по стандартной керамической технологии из карбонатов одновалентных металлов M_2CO_3 (M = K, Rb, Cs), оксидов: Tl_2O_3 (х.ч.), Ln_2O_3 (99,99% осн. вещ-ва), HfO_2 и MoO_3 (х.ч.). Во избежание потерь MoO_3 за счет возгонки прокаливание начинали с 400°С. M_2MoO_4 и $Hf(MoO_4)_2$ получали отжигом стехиометрических количеств соответствующих исходных веществ в интервале температур 400–550 и 400–700°С в течение 50 и 100 ч соответственно. Молибдаты лантаноидов синтезировали из стехиометрических смесей оксидов лантаноидов Ln_2O_3 и триоксида молибдена МоО₃. Отжиг проводили в интервале температур 400–1000 °C в течение 100–150 ч.

Фазообразование в системах M_2MOO_4 -Ln₂(MOO₄)₃-Hf(MoO₄)₂ (M = K, Tl, Rb; Ln = La-Lu) изучали методом «пересекающихся разрезов». Выявленные квазибинарные разрезы исследовали через 5–10 мол. %. Достижение равновесия контролировали рентгенографически. Взаимодействие в системах изучали методом рентгенофазового анализа («Advance D8» фирмы Bruker AXS с графитовым монохроматором).

Результаты исследования и их обсуждение

На рис. 1, 2 приведены характерные фазовые диаграммы систем в субсолидусной области.

Калиевые системы можно разделить на пять групп: I – La, Ce, Pr, Nd; II – Sm, Eu, Gd; III – Tb; IV – Dy, Ho, Y; V – Er, Tm, Yb, Lu (рис. 1) [6].

Рис. 1. Фазовые отношения в тройных молибдатных системах $K_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$, $S_1-K_2LnHf(MoO_4)_2$, заштрихована область двухфазного равновесия

Рубидиевые и таллиевые тройные солевые системы $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$ разделены на 7 групп (I – La; II – Ce–Nd; III – Sm–Gd; IV – Tb; V – Dy, Ho; VI – Er–Lu; VII – Ce–Nd) (рис. 2) [10, 2].

Молибдаты $M_5LnHf(MoO_4)_6$ (M = K, Rb) изоструктурны между собой и кристаллизуются в пространственной группе R3c. Определение структуры молибдатов проведено на монокристаллах $K_5LuHf(MoO_4)_6$, $Rb_5LnHf(MoO_4)_6$ (Ln = Nd, Eu, Er) [6,10]. Структура является каркасной. Для атомов молибдена характерна типичная тетраэдрическая координация. Атомы гафния имеют октаэдрическую координацию. Октаэдрически координированы и атомы лантаноидов в молибдатах. Особенностью данной группы соединений является статистическое распределение катионов Ln³⁺и Hf⁴⁺ по двум кристаллографическим позициям. В больших полостях каркаса размещаются два сорта однозарядного катиона с КЧ 10 и 12. Эти М-полиэдры заполняют в структуре различным образом ориентированные каналы большого сечения.

Соединения $Tl_5LnHf(MoO_4)_6$ изоструктурны тройному молибдату $Tl_5Mg_{0,5}Zr_{1,5}(MoO_4)_6$ (тригональная сингония, пр. гр. R3c) [54]. Структура представляет собой трехмерный смешанный

Рис. 2. Фазовые отношения в тройных молибдатных системах $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$, $M = Tl, Rb (S_1 - M_5LnHf(MoO_4)_6, S_2 - M_2LnHf_2(MoO_4)_6, S_3 - TlLnHf_{0,5}(MoO_4)_3),$ заштрихована область двухфазного равновесия

каркас, в образовании которого участвуют MoO₄-тетраэдры и (Mg, Zr)O₆-октаэдры, соединяющиеся через общие кислородные вершины. В больших полостях каркаса размещаются три сорта катионов таллия.

 $M_2MoO_4-Ln_2(MoO_4)_3-Hf(MoO_4)_2$

Анализ результатов исследований си-

(M = K, Rb, Tl) показывает, что молибдаты состава M₅LnHf(MoO₄)₆ (M = K, Ln = Sm-Lu; M = Tl, Rb, Ln = Ce-Lu) образуются, если разность в ионных радиусах катионов [11] находится в пределе

 $0,68 \le r_{{}_{\mathrm{M}^+}} - r_{{}_{\mathrm{Ln}^{3+}}} \le 0,86$ (таблица).

16

5

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Κ	0,61	0,61	0,65	0,66	0,68	0,69	0,7	0,72	0,73	0,74	0,75	0,76	0,77	0,78
Rb	0,69	0,71	0,73	0,74	0,76	0,77	0,78	0,80	0,81	0,82	0,83	0,84	0,85	0,86
T1	0,67	0,69	0,71	0,72	0,74	0,75	0,76	0,78	0,79	0,80	0,81	0,82	0,83	0,84
Cs	0,85	0,87	0,89	0,90	0,92	0,93	0,94	0,96	0,97	0,98	0,99	1,00	1,01	1,02

Разность ионных радиусов $r_{M^+} - r_{Ln^{3+}}$ катионов

Рис. 3. Субсолидусное строение фазовых диаграмм систем $Cs_2MoO_4 - Ln_2(MoO_4)_3 - Hf(MoO_4)_2$, $S_2 - Cs_2LnHf_2(MoO_4)_{65}$; заштрихована область двухфазного равновесия

С целью подтверждения наличия или отсутствия 5:1:2 в системах с цезием нами были изучены системы Cs_2MoO_4 – $Ln_2(MoO_4)_3$ – $Hf(MoO_4)_2$ (Ln = Nd, Sm, Tb, Er). Такой выбор лантаноидов позволяет учесть известное структурное и стехиометрическое многообразие двойных молибдатов в ограняющих системах.

При исследовании систем Cs_2MoO_4 -Ln₂(MoO₄)₃-Hf(MoO₄)₂ (Ln = Nd, Sm, Tb, Er) установлено отсутствие тройных молибдатов состава 5:1:2 и выявлено образование новой группы молибдатов состава $Cs_2LnHf_2(MoO_4)_{6.5}$ (2:1:4) (рис. 3).

Таким образом, в системах Cs_2MoO_4 -Ln₂(MoO₄)₃-Hf(MoO₄)₂ (Ln = La-Lu) и M₂MoO₄-La₂(MoO₄)₃-Hf(MoO₄) (M = K, Rb, Tl) не наблюдается образование тройных молибдатов 5:1:2. Следовательно, при возрастании Δr интервал существования соединений рассматриваемого состава $M_5 LnHf(MoO_4)_6$ не увеличивается.

Рассмотрим наряду с размерным фактором влияние структурного фактора на образование тригональных тройных молибдатов $M_5LnHf(MoO_4)_6$. В формировании структуры этих соединений $M_5LnHf(MoO_4)_6$ (как видно из фазовых равновесий) участвуют молибдаты составов $MLn(MoO_4)_2$, $M_8Hf(MoO_4)_6$, $M_2Hf(MoO_4)_3$ (рис. 1, 2). Молибдаты $M_8Hf(MoO_4)_6$ и $M_2Hf(MoO_4)_3$ (M = Tl, Rb, Cs) образуют группы изоструктурных одноформульных соединений, а $K_8Hf(MoO_4)_6$ и $K_2Hf(MoO_4)_3$ имеют

иное кристаллическое строение [3]. Таким образом, на процесс формирования тригональных молибдатов 5:1:2 определяющее влияние оказывает структура $MLn(MoO_4)_2$, которые в зависимости от природы M^+ кристаллизуются в различных структурных типах (рис. 4) [1, 4, 7, 8, 9].

Влияние структурного фактора, наряду с размерным, на образование 5:1:2 наглядно можно демонстрировать на примере таллиевых систем. Из экспериментальных данных видно, что образование соединений $Tl_{s}LnHf(MoO_{4})_{6}$ наблюдается в системах, где в качестве исходных соединений используются модификации $TlLn(MoO_{4})_{2}$, принадлежащие к структурным типам $KY(MOO_4)_2$, α -KEu(MoO_4)_2, моноклинно-искаженного $KY(MOO_4)_2$. Образование соединений $Tl_5LnHf(MOO_4)_6$ практически невозможно, если двойные молибдаты $TlLn(MOO_4)_2$ обладают шеелитоподобной структурой, т.е. принадлежат к структурному типу CaWO_4.

При исследовании систем M_2MoO_4 – La₂(MoO₄)₃–Hf(MoO₄)₂ (M = K, Tl, Rb) установлено, что если MLa(MoO₄)₂ обладают структурой типа шеелита CaWO₄-d, а в двойном молибдате RbLa(MoO₄)₂ реализуется структура искаженного шеелита α – KSm(MoO₄)₂, то в системах не наблюдается образование соединений состава 5:1:2.

Рис. 4. Структурные типы двойных молибдатов М⁺Ln³⁺ (MoO₄),

Результаты настоящего исследования позволили установить роль размерного и структурного факторов в формировании тригональных тройных молибдатов M_sLnHf(MoO₄)₆.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 08-08-00958-а, 11-08-00681-а).

Список литературы

1. Басович О.М. Новые фазы в системах M2MoO4–Ln2(MoO4)3 (M = Ag, Tl) и Li2MoO4–M2MoO4–Ln2(MoO4)3 (M = K, Rb, Tl): автореф. дис. ... канд. хим. наук. – Иркутск, 2006. – 19 с.

2. Гроссман В.Г., Базаров Б.Г., Базарова Ж.Г. Фазовые диаграммы систем Tl2MoO4–Ln2(MoO4)3–Hf(MoO4)2, где Ln = La–Lu в субсолидусной области // Журн. неорган. химии. – 2008. – № 11. – С. 1910–1916.

3. Золотова Е.С. Синтез и физико-химические свойства двойных молибдатов щелочных и четырехвалентных элементов: автореф. дис. ... канд. хим. наук. – Новосибирск, 1986. – 25 с.

4. Клевцов П.В., Клевцова Р.Ф. Полиморфизм двойных молибдатов и вольфраматов одно- и трехвалентных

металлов состава М+R3+(ЭО4)2 // Журн. неорган. химии. – 1977. – № 3. – С. 419–439.

5. Клевцова Р.Ф. Тройной молибдат таллия-магнияциркония состава TI5Mg0,5Zr1,5(MoO4)6 // Журн. неорган. химии. – 2003. – № 9. – С. 1547–1550.

6. Романова Е.Ю. Новые двойные и тройные молибдаты в системах Ln2(MoO4)3-Hf(MoO4)2 и K2MoO4-Ln2(MoO4)3-Hf(MoO4)2 (Ln = La-Lu, Y): автореф. дис. ... канд. хим. наук. – Иркутск, 2007. – 22 с.

7. Рыбаков В.К., Трунов В.К. Исследование двойных молибдатов тяжелых щелочных и редкоземельных элементов // Журнал неорган. химии. – 1971. – № 5. – С. 1320–1325.

8. Трунов В.К., Ефремов В.А. О двойных молибдатах щелочных и трехвалентных элементов // Журн. неорган. химии. – 1971. – № 7. – С. 2026–2027.

 Трунов В.К. Кристаллохимия и свойства двойных молибдатов и вольфраматов / В.К. Трунов, В.А. Ефремов, Ю.А. Великодный – Л.: Наука, 1986. – 173 с.

10. Чимитова О.Д. Фазовые равновесия, кристаллические структуры и электрические свойства новых тройных молибдатов в системах Rb2MoO4–Ln2(MoO4)3–Hf(MoO4)2 (Ln = La–Lu): автореф. дис. ... канд. хим. наук – Красноярск, 2008. – 23 с.

11. Shannon R.D. Revised effective ionic radii systematic studies of interatomic distances in halides and chalkogenides // Acta Crystallogr. – 1976. – Vol. A32. – P. 751–767.