УДК 612.111:577.352:[534.321.8+612.392.9]

СОЧЕТАННОЕ ВЛИЯНИЕ ИНФРАЗВУКА И БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК НА ЭРИТРОЦИТАРНЫЕ МЕМБРАНЫ

Бисерова А.Г., Рослякова Е.М., Байжанова Н.С., Байболатова Л.М., Шайхынбекова Р.М.

Казахский Национальный Медицинский Университет им. С.Д. Асфендиярова, Алматы, e-mail: fizi-57@mail.ru

Проведено исследование влияние инфразвука различной частоты на состояние мембран эритроцитов в сочетании с действием биологических активных добавок. Использовались биолоически активные добавки: «Маскам»— «Каменное масло», «Магнум Е», «Магнум С». Определяли осмотическую резистентность эритроцитов. Обнаружены изменения ряда свойств (в том числе осмотической резистентности) мембраны, проявляющихся в сдвигах проницаемости мембраны. Данные изменения имеют частотно-зависимый характер и связаны с качественным составом применяемых биологически активных добавок. Выявляется четкая зависимость между изменением (уменьшением) резистентности эритроцитов и частотой инфразвукового воздействия, и повышение резистентности при использовании биологически активных добавок. Так при частоте 7, 9 и 11 Гц, резко уменьшающих резистентность эритроцитов, наблюдалась довольно стойкое повышение резистентности при добавлении биологически активных добавок.

Ключевые слова: низкочастотные колебания, эритроциты, резистентность мембран эритроцитов, биологически активные добавки

COMBINED EFFECTS OF INFRASOUND AND BIOLOGICALLY ACTIVE ADDITIVES ON ERYTHROCYTE MEMBRANE

Biserova A.G., Roslyakova E.M., Baizhanova N.S., Baybolatova LM., Shayhynbekova R.M.

Kazahsky National Medical University S.D. Asfendiyarov, Almaty, e-mail: fizi-57@mail.ru

A study of the effect of different frequencies of infrasound on the state of erythrocyte membranes in conjunction with the effect of dietary supplements. Bioloicheski used supplements: «The Mask» – «rock oil», «Magnum E», «C Magnum». Determined osmotic resistance of red blood cells. Detect changes a number of properties (including osmotic resistance) membrane, manifested in a shift in membrane permeability. These changes have a frequency-dependent and relate to the qualitative composition used dietary supplements. Revealed a strong correlation between the change (decrease) the resistance of red blood cells and the frequency of infrasound exposure, and increase resistance when using dietary supplements. So at a frequency of 7, 9 and 11 Gts dramatically reduce the resistance of red blood cells, there was a fairly stable increase resistance by adding dietary supplements.

Keywords: low-frequency vibrations, the red blood cells, resistance of erythrocyte membranes, biologically active additives

Общие тенденции ускорения научнотехнического прогресса и общественного развития, глобальные климатические изменения и ухудшение состояния окружающей среды резко изменили условия существования человечества. С одной стороны создаются условия увеличения качества и продолжительности жизни человека, с другой изменившийся характер питания, темпы жизни, физическая активность, экологические условия нарушили течение заболевания, в особенности связанные с изменением обмена веществ [1, 2, 8]. Подавляющее большинство этих загрязнений имеет гидрофобную природу, поэтому они легко встраиваются, прежде всего, в липидный слой биологических мембран клеток, нарушая их функцию. Многие из антропогенных факторов инициируют в организме свободно-радикальные и перекисные процессы, что может приводить к извращению механизмов передачи наследственной ин-

формации и метаболизма в результате повреждающего действия на биологические мембраны, белки, ферментные системы и другие структуры [3, 4]. Так же приходится смириться с возросшим потреблением лекарственных веществ и их негативным влиянием. Эти многочисленные факторы приводят к снижению адаптационных возможностей организма и укорочению биологического возраста населения [9, 10]. Все это побудило мировое сообщество обратиться к новым исследованиям и разработкам в области контроля над экологией окружающей среды, развитию новых генетических методов, поддержанию здорового образа жизни и его активный пропаганде.

«Пусть Ваша пища станет Вашим лекарством и пусть Ваше лекарство станет Вашей пищей». Эта истина от Гиппократа, как пророчество, оправдавшееся через века, так как по некоторым оценкам до 90% всех болезней происходит от неправильного пи-

тания, и в 80-85 % случаев возможно излечены одной лишь диетой.

Современные технологии позволяют выделять и концентрировать незаменимые и наиболее ценные ингредиенты рациона питания в форме биологически активных добавок (БАД) [5, 6].

Одним из экологических и антропогенных неблагоприятных факторов является инфразвук (ИЗ) –диапазон механических колебаний частотой от 1 до 20 Гц. Источником ИЗ в естественных условиях бывает ветер, в ущельях гор, землетрясения и особенно частые в последние годы солнечные вспышки и магнитные бури, т.е. человек достаточно часто подвергается воздействию ИЗ, даже не подозревая об этом. Реактивные двигатели, аэро-и-гидродинамические установки, автомобили, водный транспорт и металлургическая промышленность - вот далеко не полный перечень искусственных источников ИЗ, рядом с которыми человек живет и работает. При этом в последнее время участились попытки клинического использования ИЗ. Хотя поиск сведений показывает, что имеются только заключения гигиенистов о патологических изменениях в организме (7 Гц – нервно-психические расстройства, 9Гц – боль в груди, животе, при глотании, снижение работоспособности, головокружение, ухудшение зрения, дезориентации в пространстве и т.д.) и практически отсутствует представление о биохимических и физиологических механизмах в биологических структурах при воздействии ИЗ [11].

Материалы и методы исследования

Целью нашей работы являлось изучение влияния ИЗ и БАД («Маскам»- «Каменное масло», «Магнум Е», «Магнум С») на состояние мембран эритроцитов помещенных в гипотонические растворы NaCL.

«Каменное масло» (КМ) – это комплекс макрои микроэлементов, является одним из основных препаратов Тибетской медицины и широко применяется в Восточной медицине для лечения воспалительных процессов при кровотечениях, ожогах, расстройствах желудочно- кишечного тракта, переломах костей. «Магнум-Е» – (Е+) – выпускается фирмой «New Spirit Naturals, Ins, USA. Одобрен и рекомендован Институтом Питания РАМН, и Институтом Питания РК. Состав: Каждая капсула содержит 400 МЕ витамина Е (d- альфа токоферола) и лецитин –выделенные из масла ростков пшеницы. «Магнум-С» – (МС) – выпускается фирмой «New Spirit Naturals, Ins, USA. Одобрен и рекомендован Институтом Питания РАМН, и Институтом Питания РК. Состав: Витамин С (Эстер С) аскорбаты магния и калия, биафлавоноиды, шиповник, листья дикого салата, черный грецкий орех, корни лопуха, сарсапарилла.

Опыты ставились в несколько серий с донорской кровью in vitro с добавлением БАД. Осмотическую резистентность определяли в растворах хлористого натрия различной концентрации (0,9-0,35 г/100 мл и 4 М раствор). Навеску каждого из препаратов (100 мкг. на 20 мл крови) помещали в кровь, затем вносили в гипотонические растворы NaCl. Инкубировали кровь в течение 20 мин при 37°C и центрифугируя 10 мин при 1000 g. Использовали по 9 проб крови для каждого препарата. Полученные результаты сравнивались в процентном отношении с контрольной пробой крови, не подвергающейся воздействию инфразвука, в которой гемолиз принят за 100%. Всего проведено 350 экспериментов. Результаты обрабатывали статистически с использованием программы Microsoft Excel, с определением $M \pm M$, t-критерия Стьюдента и считали достоверными при p < 0.05 и p < 0.01.

Результаты исследования и их обсуждение

При использовании уменьшающихся концентраций NaCl от 0,9 г/100 мл до 0,35 г/100 мл кривая гемолиза имеет различную форму, зависящую от частоты инфразвукового воздействия. Так при частоте ИЗ 5, 7 и 9 Гц наблюдается значительное повышение гемолиза. При действии ИЗ 3, 11 и 13 Гц гемолиз увеличивается только в 0,5 г/100 мл NaCl. При частоте 1, 15 и 17 Гц отмечается уменьшение гемолиза во всех концентрациях хлористого натрия.

В большинстве случаев при добавлении к пробам биологически активных добавок (табл. 1) наблюдали увеличение как максимальной, так и минимальной резистентности эритроцитов по сравнению с контролем.

В следующей серии опытов на кровь, обогащенную БАД, оказывали воздействие ИЗ различной частоты от 1 до 17 Гц, затем вносили кровь в гипотонические растворы NaCl. В результате установлено увеличение минимальной и максимальной резистентности эритроцитов даже под воздействием ИЗ.

Таблица Изменение (увеличение) осмотической резистентности эритроцитов при добавлении БАД. М \pm m% при р < 0,05

Каменное масло		Магн	ум Е+	Магнум С	
резистентность, %		резистентность, %		резистентность,%	
Min	Max	Min	Max	Min	Max
$12,0 \pm 1,5 \%$	6,0 ± 3,0 %	$19,1 \pm 3,5\%$	$12,0 \pm 0,68\%$	12,0 ±1,5 %	10,0 ±2,8 %

Таблица 2)
-----------	---

Изменение (увеличение) осмотической резистентности эритроцитов при добавлении БАД и воздействии ИЗ. М \pm m %

a ¬	Изменение (увеличение) осмотической резистентности в $\%$ M \pm м при р $<$ 0,05								
Частота ИЗ /Гц	Каменное масло		Магнум Е		Магнум С				
	резистентность, %		резистентность,%		резистентность, %				
	min	max	min	max	min	max			
1	$11,5 \pm 2,5\%$	$5,5 \pm 2,5\%$	$17,2 \pm 2,3\%$	$10,2 \pm 2,4\%$	$11,0 \pm 1,5\%$	$8,25 \pm 1,69\%$			
3	$10,0 \pm 3,5\%$	$4,35 \pm 4,1\%$	$17,0 \pm 2,3 \%$	$10,2 \pm 2,4\%$	$9,4 \pm 2,5\%$	$7,37 \pm 2,3\%$			
5	$10,0 \pm 2,5\%$	$3,9 \pm 1,68\%$	$13,65 \pm 3,5\%$	$6,9 \pm 3,2\%$	$8,97 \pm 1,95\%$	$6,3 \pm 1,5\%$			
7	$9,68 \pm 3,9\%$	$3,69 \pm 3,5\%$	$14,2 \pm 3,4\%$	$7,0 \pm 3,0 \%$	$8,3 \pm 3,2\%$	$6,3 \pm 1,5\%$			
9	$7,7 \pm 4,1\%$	$3,1 \pm 3,51\%$	$12,9 \pm 3,1\%$	$9,5 \pm 2,3\%$	$6,2 \pm 1,8\%$	$4,53 \pm 3,0\%$			
11	$7,5 \pm 2,5\%$	$3,5 \pm 1,5\%$	$16,5 \pm 2,8\%$	$7,9 \pm 1,8\%$	5,9 ± 3,2 %	5,7 ± 3,1 %			
13	$8,0 \pm 1,7\%$	$4,25 \pm 1,9\%$	$16,9 \pm 2,9\%$	$7,9 \pm 1,8\%$	$7,1 \pm 2,4\%$	5,98 ± 2,5 %			
15	9,68 ± 0,9 %	$4,97 \pm 3,0\%$	$17,0 \pm 3,0 \%$	9,1 ± 2,2 %	9,7 ± 2,6 %	6,3 ± 1,5 %			
17	$11,0 \pm 3,0\%$	5,8 ± 3,1 %	$17,5 \pm 3,0\%$	9,1 ± 2,2 %	$11,3 \pm 1,6\%$	8,0 ± 1,7%			

Многочисленные литературные данные свидетельствуют, что а – ТФ и аскорбиновая кислота обладает протекторными свойствами, уменьшая перекисные и свободно-радикальные процессы в биомембранах [7, 12] и как следствие, изменяют проницаемость мембран. На ряду с препаратами, содержащими известные антиоксиданты а – ТФ и АК («Магнум Е» и «Магнус С»), данными свойствами обладает препарат «Маскам» (КМ), причем КМ увеличивает осмотическую резистентность эритроцитов даже в большей степени, чем АК.

При воздействии ИЗ процент изменения осмотической резистентности эритроцитов зависит от частоты ИЗ и качественного состава препаратов. При частоте 1 и 17 Гц наблюдалось увеличение резистентность практически как в контрольных опытах, тем не мение, при частоте 7, 9 и 11 Гц, резко уменьшающих резистентность эритроцитов, наблюдалась довольно стойкое повышение резистентности при добавлении БАД.

При воздействии ИЗ процент изменения осмотической резистентности эритроцитов зависит от частоты ИЗ и качественного состава препаратов. При частоте 1 и 17 Гц наблюдалось увеличение резистентность практически как в контрольных опытах, тем не мение, при частоте 7, 9 и 11 Гц, резко уменьшающих резистентность эритроцитов, наблюдалась довольно стойкое повышение резистентности при добавлении БАД. Таким образом по результатам экспериментов данные БАД («Каменное масло», «Магнум» « Е», «Магнум Ц») можно рекомендовать как альтернативные препараты, значительно стабилизирующие биомембраны клеток при воздействии различных неблагоприятных факторов, в частности инфразвука, и повышающие низкий адаптационный потенциал и низкий антиоксидантный статус организма человека.

Список литературы

- 1. Байжанова Н.С., Хасенова К.Х., Рослякова Е.М., Бисерова А.Г. Влияние экологических условий Приаралья на морфофункциональные показатели школьников старших классов // Международный журнал экспериментального образования. -2014. № 5. С. 16—17.
- 2. Байжанова Н.С., Хасенова К.Х., Абишева З.С., Рысбаев О. Морфофункциональные показатели школьников старших классов в зависимости от удаленности проживания от Аральского моря. (Тезисы). Фундаментальные аспекты компенсаторно-приспособительных процессов: Материалы Четвертой Всеросс. научно-практ. конференции. Новосибирск, 2009. С. 20—21.
- 3. Бобырев В.Н. Биоантиоксиданты и свободно-радикальная патология. – Полтава, 1987. – 51 с.
- 4. Дадали В.А., «Процессы перекисного окисления в организме и природные антиоксиданты». Новосибирск, 1999. С. 240–263.
- Дадали В.А. Молекулярные механизмы эндоэкологического действия природных веществ БАД к пище.// Материалы конференции корпорации Витамакс XXI век. М., 2001. С. 3–12.
- 6. Иванов И.И., Мерзляр М.Н., Тарусов Б.Н. (1975) В сб.: Биоантиоксидант. М., Наука, 52, 30–52.
- 7. Коростелёв С.А., с соавтор. (1991) В сб. Клиническая витаминология. –М., С. 107–108.
- 8. Рослякова Е.М., Байжанова Н.С., Бисерова А.Г., Хасенова К.Х., Абишева З.С. Студент в условиях экосистемы г. Алматы // Международный журнал экспериментального образования. -2014. -№ 5. -C. 17-18.
- 9. Рослякова Е.М., Хасенова К.Х., Бисерова А.Г., Игибаева А.С., Алипбекова А.С.. Изучение адаптационных возможностей у студентов.// Здоровье семьи XXI век. Материалы XVIII Международной научной конференции / Нетания, Израиль. Пермь 2014. С. 139—143.
- 10. Рослякова Е.М., Соколов А.Д., Абишева З.С., Кожаниязова А.Н., Абдирова Т.О.. Изучение темпов старения отдельных систем органов у лиц пожилого возраста. // Здоровье семьи XXI век. Материалы XVIII Международной научной конференции. Нетания, Израиль. Пермь, 2014. С. 143—146.
- 11. Рослякова Е.М., Соколов А.Д, Автоматия сердечной мышцы при действии инфразвука // Российский физиологический журнал им. Сеченова -2004. Т. 90, № 8. С. 450-451.
- 12. Спиричев В.Б., Конь И.Я. Биологическая роль жирорастворимых витаминов, М.: ВИНИТИ, итоги науки и техники. Физиология человека и животных, Т. 37, 1989. 244 с.