УДК 621.791.76:621.7.044.2

ТРИБОТЕХНИЧЕСКИЕ СВОЙСТВА КАРБИДОХРОМОВЫХ ТВЕРДЫХ СПЛАВОВ С ТИТАНОВОЙ СВЯЗКОЙ

Крохалев А.В., Харламов В.О., Тупицин М.А., Приходьков К.В., Авдеюк О.А., Савкин А.Н., Кузьмин С.В., Лысак В.И.

ФГБОУ ВПО «Волгоградский государственный технический университет», Волгоград, e-mail:kroch@ystu.ru.

Рассмотрены триботехнические характеристики твердых сплавов системы Cr_3C_2 -Ti, полученных путем взрывного прессования смесей порошков карбида хрома с 20, 30, 40 и 50% (по объему) титановой связки. Установлено, что указанные сплавы имеют более высокие антифрикционные свойства и износостойкость, чем силицированный графит и твердые сплавы системы Cr_3C_2 -Ni, полученные традиционными методами. Работа выполнена при поддержке РФФИ в рамках проекта № 13-08-12028 офи_м

Ключевые слова: карбид хрома, титан, твердые сплавы, взрывное прессование порошков, трибологические исследования, антифрикционные материалы, трение, износ

TRIBOTECHNICAL PROPERTIES OF CHROMIUM CARBIDES SOLID TITANIUM ALLOYS WITH LIGAMENT

Krokhalev A.V., Kharlamov V.O., Tupicin M.A., Prikhodkov K.V., Avdeuk O.A., Savkin A.N., Kuzmin S.V., Lysak V.I.

FGBOU VPO «Volgograd State Technical University», Volgograd, e-mail: kroch@vstu.ru.

Tribotechnical characteristics of the Ti–Cr₃C₂ system hard alloys produced by the explosive compaction of powders containing 20, 30, 40, and 50 vol% of the titanium binder are investigated. It is established that the mentioned alloys have higher antifriction characteristics and wear resistance than silicicated graphite and the Cr₃C₂–20% Ni type materials produced by conventional methods. This work was supported by RFFI project No 13-08-12028 of im.

Keywords: chromium carbide, titanium, hard alloy, explosive compaction of powders, tribological engineering, antifriction material, friction, wear

Прогресс ряда областей техники определяется успехами в создании новых материалов для использования в узлах трения, которые способны успешно работать в тяжелых условиях, таких как повышенные или пониженные температуры, высокие скорости скольжения и удельные нагрузки, агрессивные среды, вакуум, сильная радиация и т.п. Весьма перспективным направлением научных исследований в этой связи является разработка новых твердых сплавов триботехнического назначения и новых методов их получения.

Так для изготовления деталей подшипников скольжения, работающих в паре с силицированным графитом в условиях смазки водой, в настоящее время используют сплавы карбида хрома Cr_3C_2 с никелем или нихромом, получаемые путем прессования и спекания. Замена традиционного никеля на титан и использование взрывного нагружения [4] позволяет отказаться от спекания и совместить процесс получения твердого сплава с его нанесением в виде покрытия на рабочие поверхности заготовок деталей узлов трения.

Целью настоящей работы явилось изучение триботехнических свойств подобных материалов, выявление факторов,

определяющих особенности их трения по силицированному графиту, и выработка рекомендаций по оптимизации их состава, обеспечивающих достижение наиболее благоприятных условий трения и минимального износа.

Испытаниям на трение и износ были подвергнуты сплавы, содержащие 14, 22, 31 и 40% титановой связки, что соответствовало ее объемному содержанию 20, 30, 40 и 50%. Использованные для получения сплавов режимы нагружения обеспечивали их максимальную твердость HV и плотность, близкую к плотности монолитного материала [2, 4, 6]. Испытания проводились на машине трения МИ-1М по схеме «штифт – кольцо» с врезанием по известной методике [1].

Кривые зависимости коэффициента трения k исследованных материалов по силицированному графиту в среде дистиллята от удельной нагрузки $P_{y_{J}}$ приведены на рис. 1. Как видно из рисунка, на кривых хорошо прослеживаются все переходы от одного режима трения к другому, характерные для диаграмм Герси-Штрибека [3, 5, 7, 8]: с увеличением нагрузки коэффициент трения сначала уменьшается (режимы ги-

дродинамической и упругогидродинамической смазки), затем начинает возрастать и быстро приходит в насыщение (режимы смешанной и граничной смазки). При дальнейшем увеличении нагрузки коэффициент трения снова достаточно резко возрастает и вновь выходит на насыщение, но при большем, чем в предыдущем случае, уровне значений (трение в режиме схватывания).

По изломам на кривых зависимости коэффициента трения исследованных материалов от удельной нагрузки могут быть определены основные характеристики их антифрикционных свойств, такие, как предельные нагрузки устойчивого, преимущественно жидкостного трения P_{x} , граничного трения и перехода к схватыванию P_{c} , а так же значения минимального коэффициента

преимущественно жидкостного трения k_{\min} , коэффициентов трения при граничной сказке $k_{\text{гр}}$ и при трений в режиме схватывания k_{c} . Влияние содержания титановой связки на перечисленные характеристики показано на рис. 2. Как видно из этого рисунка, минимальный коэффициент трения практически не зависит от содержания связки в материале. Коэффициенты трения при граничной сказке и в режиме схватывания с увеличением содержания титана до 30% по объему уменьшаются, а затем возрастают.

В противоположность этому, с увеличением содержания связки до 30% предельная нагрузка устойчивого преимущественно жидкостного трения и предельная нагрузка перехода к схватыванию возрастают, а затем уменьшается.

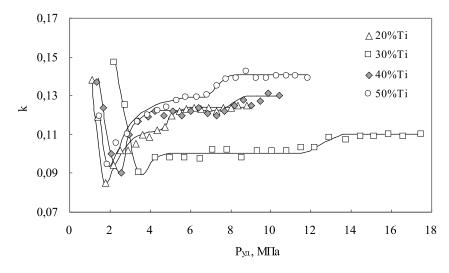
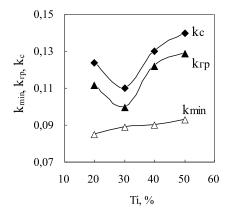



Рис. 1. Зависимость коэффициента трения карбидохромовых твердых сплавов с титановой связкой от удельной нагрузки

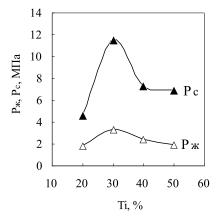


Рис. 2. Основные антифрикционные характеристики карбидохромовых твердых сплавов с титановой связкой

Зависимость износа образца $\Delta V_{_{\rm III}}$ и контртела $\Delta V_{_{\rm K}}$ от содержания титановой связки в исходной смеси порошков, используемой для получения твердых сплавов, приведена на рис. 3.

Как следует из рисунка, минимальный суммарный износ пары трения имеет место при содержании связки, равном 30%. Кроме материала этого состава интерес представляет твердый сплав, содержащий 50% титана. При несколько большем, чем для сплава с 30% связки, износе материала образца суммарный износ пары трения в этом случае оказывается практически таким же, как и для сплава с оптимальным его содержанием.

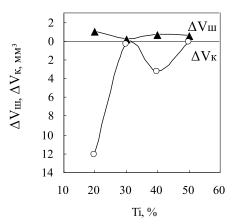


Рис. 3. Износ в паре трения «сплав на основе карбида хрома – силицированный графит»

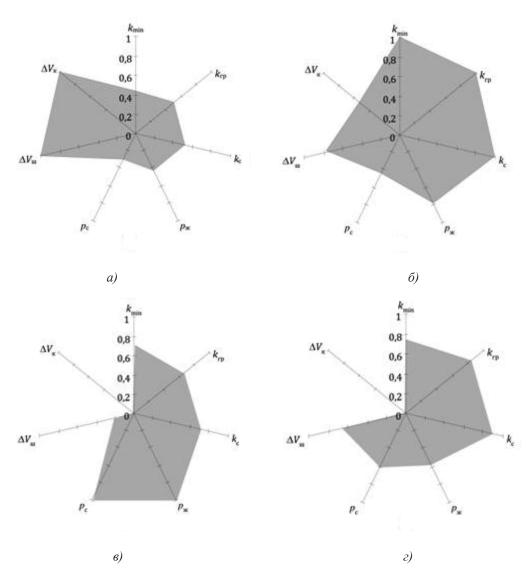


Рис. 4. Сравнительные данные по антифрикционным свойствам и износу некоторых материалов: $a-C\Gamma\Pi$ -0,5; $\delta-KXH$ -20; $\epsilon-C\varepsilon_3C_2+30\%Ti$; $\varepsilon-C\varepsilon_3C_2+50\%Ti$

Свойство материала	Разработанные материалы на основе карбида хрома		Применяемые материалы	
	Содержание титана, %		5,	02
	30	50	СГП-0,5	KXH-20
Минимальный коэффициент преимущественно жидкостного трения	0,089	0,093	0,054	0,123
Предельная нагрузка устойчивого преимущественно жидкостного трения, МПа	3,3	1,9	1,4	2,6
Коэффициент трения при граничной смазке	0,100	0,129	0,076	0,152
Предельная нагрузка схватывания, МПа	11,5	6,9	3,5	5,2
Коэффициент трения в режиме схватывания	0,110	0,140	0,080	0,154
Износ штифта, мм ³	0,2	0,6	0,9	0,7
Объемный износ кольца, мм ³	0,4	0,2	14,2	7,5
Суммарный износ пары трения, мм ³ .	0,6	0,8	15,1	8,2

Антифрикционные свойства и износостойкость материалов

Для корректного сопоставления свойств разработанных сплавов со свойствами уже известных антифрикционных материалов, применяемых в настоящее время в рассматриваемых узлах трения, по описанной выше методике были проведены триботехнические испытания силицированного графита СГП-0,5 и твердого сплава карбида хрома с никелем КХН-20, полученных традиционными методами. Результаты экспериментов приведены в таблице в натуральном масштабе и на лепестковых диаграммах (рис. 4) – в относительном. Сопоставление представленных данных указывает на принципиальную возможность использования разработанных порошковых сплавов и свидетельствует о том, что замена одного из элементов пары трения «силицированный графит по силицированному графиту» на деталь с покрытием из твердого сплава на основе карбида хрома с титановой связкой может существенно повысить долговечность узла трения за счет снижения суммарного износа пары трения.

При этом можно добиться различного распределения износа между элементами пары трения: при использовании сплава с 30% титановой связки меньше изнашиваться будет деталь с покрытием, а применение сплава с 50% титана обеспечит более высокую износостойкость элемента, выполненного из силицированного графита.

Работа выполнена при поддержке РФФИ в рамках проекта № 13–08–12028 офи_м.

Список литературы

- 1. Исследования триботехнических свойств материалов для подшипников скольжения / Крохалев А.В., Авдеюк О.А., Приходьков К.В., Савкин А.Н. // Заводская лаборатория. Диагностика материалов. -2013. T. 79, № 9. C. 68–70.
- 2. Компьютерный расчет параметров сжатия при нанесении порошковых покрытий взрывом / Крохалёв А.В., Харламов В.О., Кузьмин С.В., Лысак В.И. // Известия Волгоградского государственного технического университета. 2010. Т. 5, № 4. С. 110–116.
- 3. Оптимизация составов порошковых твердых сплавов, используемых в подшипниках скольжения, смазываемых водой / Крохалёв А.В., Авдеюк О.А., Приходьков К.В., Кузьмин С.В., Лысак В.И. // Вестник машиностроения. $2013.- N\!\!\!_{\, 2} 5.- C.42\!\!-\!45.$
- 4. Получение порошковых твердых сплавов на основе карбида хрома взрывным прессованием / Крохалев А.В., Харламов В.О., Кузьмин С.В., Лысак В.И. // Физика и химия обработки материалов. -2014. -№ 4. -C. 46–51.
- 5. Триботехнические свойства порошковых твердых сплавов карбида хрома с титаном, полученных взрывным прессованием / Крохалев А.В., Харламов В.О., Кузьмин С.В., Лысак В.И. //Известия высших учебных заведений. Порошковая металлургия и функциональные покрытия. −2012. № 3. С. −67а−72.
- 6. Features for formation of solid alloys of chromium carbide and titanium powder mixtures by explosion energy / Krokhalev A.V., Kharlamov V.O., Kuz'min S.V., Lysak V.I. // Russian Journal of Non-Ferrous Metals. 2013. T. 54, № 6. C. 522–526.
- 7. Optimization of hard powder alloys used in slip bearings / Krokhalev A.V., Avdeyuk O.A., Prikhod'kov K.V., Kuz'min S.V., Lysak V.I. // Russian Engineering Research. 2013. T. 33, № 8. C. 448–450.
- 8. Tribotechnical properties of powder hard alloys of chromium carbide with titanium fabricated by explosive pressing / Krokhalev A.V., Kharlamov V.O., Kuz'min S.V., Lysak V.I. // Russian Journal of Non-Ferrous Metals. 2014. T. 55, N 2. C. 212–217.