426

УДК 552.3:550.4:550.42:550.93 ГЕОХИМИЯ И ПЕТРОЛОГИЯ ВУЛКАНИЧЕСКИХ ПОРОД РЕКИ БОДРАК (ЦЕНТРАЛЬНЫЙ КРЫМ, РОССИЯ)

Гусев А.И.

Алтайская государственная академия образования им. В.М. Шукшина, Бийск, e-mail: anzerg@mail.ru

Приведены данные по петро-геохимии вулканогенных пород реки Бодрак: базальтам, трахибазальтам, андезибазальтам и андезитам. Указаны вещественные признаки насыщенности магматогенных флюидов летучими компонентами, и в первую очередь, фтором. Породы отнесены к мета- и пералюминиевым группам, магнезиальным и железистым разностям. Их генезие связан с различной степенью частичного плавления астеносферных источников: шпинелевых лерцолитов обогащённой мантии и гранатовых лерцолитов деплетированной мантии. В породах проявлен тетрадный эффект фракционирования редкоземельных элементов М-типа, обусловленный высокой флюидонасыщенностью расплавов, в особенности фтором.

Ключевые слова: лавы, базальты, трахибазальты, андезибазальты, андезиты, частичное плавление шпинелевых лерцолитов и гранатовых лерцолитов, тетрадный эффект фракционирования РЗЭ

GEOCHEMISTRY AND PETROLOGY OF VOLCANIC ROCKS RIVER BODRAK (CENTRAL CRIMEA, RUSSIA)

Gusev A.I.

The Shukshin Altai State Academy of Education, Biisk, e-mail: anzerg@mail.ru

Data on petro-geochemistry of volcanic rocks river Bodrak: basalts, trachibasalts, andezibasalts, andezites lead. The substantial signs of saturation magmatic fluids of volatile components and the first order fluor showed. Rocks refer to meta- and peraluminous groups magnesium and ferrous varieties. Genesis of their related with different degrees of partial melting of asthenosphere sources: spinel lherzolites of enriched mantle and garnet lherzolites of depletion mantle. The tetrad effect fractionation of rare elements M-type display in rocks that it cause by high saturation fluids of melts especially fluor.

Keywords: lava, basalts, trachibasalts, andezibasalts, andezites, partial melting of spinel lherzolites and garnet lherzolites, tetrad effect fractionation of REE

В Центральном Крыму в районе Симферополя, Бодрака, Альмы, селения Лозового обнажено несколько вулканогенных и субвулканических разрезов, представляющих собой эффузивные центры полуострова, имеющих все признаки близости к вулканическим центрам и подводящим каналам. Их изучение интенсивно проводилось в 60-90-е годы прошлого века с детальным описанием петрографии пород [4]. Возраст вулканитов считался поздне-байосским, отнесённым к бодракско-карадагской вулканической серии и формировавшимся в островодужной обстановке. Однако, в последнее время появились уточнённые данные о Ar/Ar возрасте эффузивов субвулканических образований Карадага, Петропавловского карьера, Бодрака [11], давшие новый толчок к пересмотру и вещественных характеристик этих образований. Цель исследования – изучить петрологические и геохимические особенности вулканитов реки Бодрак с применением современных методов анализа пород (методом эмиссионной спектрометрией с индуктивно-связанной плазмой (ISP-MS) спектрометре «ОРТІМА-4300»), как на это сделано нами для вулканитов Карадага и Петропавловского карьера [2, 3].

Результаты исследований. Вулканогенные породы в районе реки Бодрак представлены линзовидными телами лав базальтов, трахибазальтов, андезибазальтов и андезитов, относящиеся к бодракскому субвулканическому комплексу с абсолютным К/ Ar возрастом 160-175 млн. лет [4]. ⁴⁰Ar/³⁹Ar методом по плагиоклазу возраст вулканитов уточнён и составляет 160-162 млн. лет (келловей-оксфорд) [11]. Вулканиты, как правило, порфиритовые породы с вкрапленниками оливина (местами полностью серпентинизированного), авгита в базальтах, трахибазальтах, роговой обманки, авгита и плагиоклаза в анлезибазальтах и анлезитах. Изредка в андезитах отмечается биотит с повышенным содержанием фтора (до 3%). В базальтах и андезитах присутствуют миароловые пустоты. Матрикс микролитовый. Местами в андезитовых лавах в стекле присутствуют везикулы, представляющие собой микропузырьки с захваченными вулканическими газами. Нередки миндалины, выполненные микрокристаллическим кварцем, халцедоном, цеолитом, эпидотом, кальцитом, хлоритом. Плагиоклаз вкрапленников полисинтетически сдвойникован, с прямой зональностью, местами замещается кальцитом и хлоритом.

Характерной особенностью всех пород является резкое преобладание натрия над калием. Отношение U/Th варьирует от 0,3 до 0,38, свидетельствующее об отсутствии в анализируемых породах сильных наложенных изменений. В породах наблю-

дается не дифференцированный тип распределения лёгких относительно тяжёлых редкоземельных элементов, подтверждаемый нормированным к хондриту отношением (La/Yb)_N, варьирующим от 0,26 до 0,84 (табл. 1).

Таблица 1

		× *				,		
	1	2	3	4	5	6	7	8
SiO ₂	48,9	48,6	54,87	54,9	57,2	56,9	57,0	57,0
TiO	0,63	0,67	1,09	1,07	1,03	1,55	1,1	1,5
Al ₂ Ó ₂	15,48	15,34	16,02	16,0	16,5	14,4	16,1	14,6
Fe ₂ O ₂	8,81	12,02	10,45	10,4	9,7	11,95	9,4	11,9
MnO	0,34	0,24	0,19	0.2	0,15	0,14	0,13	0,15
MgO	4.56	8.45	7.64	7.5	5.1	2.9	5.0	2.7
CaO	17.95	9.55	2.89	2.9	4.5	5.47	4.4	5.57
Na.O	1.56	1.38	6.47	6.5	5.0	6.12	5.5	6.16
K.O	0.36	0.31	0.12	0.22	0.66	0.25	0.7	0.23
P.O.	0.07	0.06	0.1	0.14	0.12	0.16	0.12	0.16
Be	11	12	13	1.5	16	19	13	13
Li	2.3	33	3.4	3 5	33	3.6	4 5	4 5
V	283	290	292	280	300	340	303	307
Cr	648	556	43	41	30	7	31	8
Co	48	49	40	41	28	33	29	34
Ba	156	155	49	50	115	65	105	70
Sc	41	43	34	31	28	32	26	31
Ga	15	15.5	16	15	18	14	17	14
Zn	75	73	68	65	83	84	8.8	88
Cu	91	94	33	31	30	16	30.5	18
Ni	195	198	25	22	34	6	30	8
Mo	2	2	3	3	31	2	30	21
Nh	12	13	11	14	23	1.8	22	19
V	15	1,5	29	30	2,5	39	29	40
Zr	35	38	74	76	80	105	82	115
Sr	210	215	155	160	66	86	68	85
Rb	7.5	7.6	1.6	2.6	3.0	7.0	32	71
Th	11	12	1.4	19	2.2	3.0	2,1	2.0
U	0.4	0.4	0.5	0.6	0.8	0.9	0.8	0.6
Pb	4.4	4.8	5.5	7.5	2.9	3.4	3.5	3.9
La	4.7	5.0	2.4	3.4	7.9	3.9	7.8	4.1
Ce	4.4	4.9	9.3	10.3	16.6	11.7	15.1	11.9
Pr	1.8	2.0	2.5	2.9	4.0	3.3	3.5	3.8
Nd	6,8	7,1	10,1	11.1	10,5	9.3	10,1	9,9
Sm	2,2	2,3	2,7	3,0	3,0	3,4	3,2	3,9
Eu	1,75	1,9	1,5	1,3	1,1	1,0	1,2	1,2
Gd	5,6	5,9	6,2	8,2	8,1	8,0	8,0	8,4
Tb	1,5	1,8	2,0	2,4	2,2	2,1	2,0	2,2
Dy	8,7	9,0	9,3	9,9	9,5	9,3	9,2	9,1
Ho	0,5	0,52	0,6	0,8	0,77	0,73	0,7	0,72
Er	0,31	0,4	0,5	0,45	0,4	0,43	0,4	0,41
Tm	0,69	0,71	0,75	0,78	0,7	0,65	0,65	0,6
Yb	5,4	5,5	6,0	6,1	6,3	6,0	6,1	6,0
Lu	0,70	0,72	0,75	0,78	0,7	0,65	0,7	0,6
Hf	1,9	2,0	2,0	1,8	1,9	1,5	1,8	1,3
Та	1,4	1,3	1,2	1,3	1,7	1,4	1,3	1,2
W	0,33	0,31	0,4	0,45	0,5	0,6	0,4	0,4
$(La/Yb)_{x}$	0,57	0,6	0,26	0,37	0,83	0,43	0,84	0,45
U/Th	0,36	0,33	0,36	0,32	0,36	0,3	0,38	0,3

Представительные анализы вулканитов реки Бодрак (главные компоненты в %, элементы – в г/т)

Примечание. Анализы выполнены: силикатный на главные компоненты химическим методом в Лаборатории Западно-Сибирского испытательного Центра (г. Новокузнецк); для микроэлементов – методом ICP-MS в лаборатории СО РАН (г. Новосибирск). Нормализация элементов проведена по [7]. Породы р. Бодрак: 1–2 – базальты, 3–4 – трахибазальты, 5 – андезибазальт, 6–8 – андезиты.

На классификационной диаграмме (Na₂O+K₂O) – SiO₂ вулканиты реки Бодрак занимая свои поля, свидетельствуют о преобладании нормальных известково-щелочных пород, а трахибазальты, возможно, свидетельствуют о процессах частичного плавления различных источников, или о контаминации коровым материалом (рис. 1).

По соотношению $Al_2O_3/(Na_2O+K_2O) - Al_2O_3/(CaO+Na_2O+K_2O)$ базальты локализуются в метаалюминиевом и пералюминиевом полях, а все остальные разности – в пералюминиевом (пересыщенном глинозёмом) (рис. 2, а). По соотношению $Fe_2O_3/(Fe_2O_3+MgO) - SiO_2$ андезиты относятся к железистым и магнезиальным разностям, а все остальные породы – к магнезиальным (рис. 2, б).

На канонических диаграммах породы реки Бодрак попадают в различные поля.

Рис. 1. Диаграмма (Na₂O+K₂O) – SiO₂ для вулканитов реки Бодрак: 1 – базальты; 2 – трахибазальты; 3 – андезиты; 4 – андезибазальты

Рис. 2. а – диаграмма $Al_2O_3/(N_2O+K_2O) - Al_2O_3/(N_2O+K_2O+CaO)$ по [10]; б –диаграмма $SiO_2 - Fe_2O_3/(Fe_2O_3+MgO)$ по [12] для вулканогенных пород реки Бодрак. Условные на рис. 1

Интерпретация результатов. Приведенные результаты показывают, что вулканиты реки Бодрак отличаются от таковых Карадага по возрасту и петро-геохимическим данным [Гусев]. По соотношению La и Nb все породы реки Бодрак

тяготеют к астеносферному источнику (рис. 3).

Соотношение La/Sm- La указывет, что породы реки Бодрак генерированы из различных мантийных источников и неодинаковой степени частичного плавления (рис. 4).

Рис. 3. Диаграмма La – Nb по [8] для вулканических пород реки Бодрак. Границы геосфер приняты по соотношениям La и Nb по [8]: Lit – литосфера, Ast – астеносфера. Условные обозначения на рис. 1

Рис. 4. Диаграмма La/Sm – La no [6] для вулканитов реки Бодрак. DMM – деплетированный мантийный источник MORB. PM – примитивная мантия; EM – обогащённый мантийный источник; E-MORB – и N-MORB – составы обогащённых (Е) и нормальных (N), базальтов срединно-океанических хребтов; точечные линии – тренды плавления источников DMM и EM, засечки с цифрами на точечных линиях – степень частичного плавления для соответствующих мантийных источников. Условные те же, что на рис. 1

Если генерация базальтов связана с высокой степенью частичного плавления шпинелевого лерцолита обогащённой мантии, то источником образования остальных пород была деплетированная мантия и разная степень частичного плавления гранатового лерцолита. Если базальты тяготеют к среднему составу базальтов Е-MORB, то трахибазальты располагаются вблизи среднего состава базальтов N-MORB (рис. 4).

В вулканических породах района проявлен тетрадный эффект фракционирования (ТЭФ) РЗЭ М- типа, что является необычным для базальтоидов. В таблице 2 приведены величины тетрадного эффекта фракционирования РЗЭ и некоторые отношения элементов, а также значения этих отношений в хондрите. Следует указать, что отношения элементов La/Nb и La/Ta в породах района меньше, чем в хондритах, отношения остальных элементов и меньше и больше хондритовых, указывая на значительное перераспределение элементов в вулканитах реки Бодрак (табл. 2).

Таблица 2

Величины тетрадного эффекта фракционирования РЗЭ и отношения некоторых элементов в вулканических породах реки Бодрак

Отношения эле- ментов и вели- чины ТЭФ	1	2	3	4	5	6	7	8	Отноше- ния в хон- дритах
Zr/Hf	18,4	19,0	37	42,2	42,1	70	45,5	88,5	36,0
Y/Ho	30	30,8	48,3	37,5	36,4	53,4	41,4	55,6	29,0
La/Nb	3,9	3,8	2,2	2,4	3,4	2,2	3,5	2,1	17,2
La/Ta	3,4	3,8	2,0	2,6	4,6	2,8	6,0	3,5	16,8
Sr/Eu	120	113	103	123	60	86	57	71	100,5
Eu/Eu*	1,5	1,52	1,1	0,76	0,65	0,57	0,7	0,63	1,0
TE ₁₃	1,52	1,62	1,92	1,66	1,63	1,72	1,57	1,74	

Примечание. ТЕ_{1,3} – тетрадный эффект фракционирования РЗЭ как среднее между первой и третьей тетрадами по [9]. Еи*= (Sm_N+Gd_N)/2. Вулканические породы реки Бодрак: 1-2 – базальты, 3-4 – трахибазальты, 5 – андезибазальт, 6-8 – андезиты.

На диаграмме Zr/Hf – TE_{1,3} увеличение тренда значений ТЭФ РЗЭ М-типа происходит с уменьшением отношений Zr/Hf (рис. 5). Более низкие отношения Zr/Hf отвечают более высокой щёлочнности среды, согласно рядам кислотности – щелочности в водно-сероводородных растворах при стандартных условиях по [5]. Следовательно, увеличение величины тетрадного эффекта М-типа происходит при повышении щёлочности среды магматогенных флюидов, в которых важную роль играли F-комплексы [1], судя по тому, что в породах обнаружен биотит с повышенным содержанием фтора.

Заключение

Вулканогенные породы реки Бодрак включают лавовые базальты, трахибазальты, андезибазальты и андезиты, иногда миндалекаменные. Наличие везикул в вулканическом стекле и миндалин, указывает на то, что лавы были насыщены газами и флюидами, содержавшими в себе СО₂, F, SO, и другие компоненты. В породных типах проявлен тетрадный эффект фракционирования РЗЭ М-типа, который обусловлен высокой флюидонасыщенностью расплавов, в особенности фтором, комплексы которого трансформировали соотношение редких земель в тетрадах [1]. Генерация базальтов связана с высокой степенью частичного плавления шпинелевого лерцолита обогащённой мантии, источником же образования остальных пород была деплетированная мантия и разная степень частичного плавления гранатового лерцолита. Если базальты тяготеют к среднему составу базальтов E-MORB, то трахибазальты проявляют близость к среднему составу базальтов N-MORB.

Рис. 5. Диграмма Zr/Hf – TE₁₃ для эффузивных пород реки Бодрак. Условные на рис. 1

Список литературы

1. Гусев А.И., Гусев А.А. Тетрадный эффект фракционирования редкоземельных элементов и его использование в решении проблем петрологии гранитоидов // Успехи современного естествознания. – 2011. – № 5. – С.45–49.

2. Гусев А.И. Петрология и геохимия вулканических пород Карадага (Восточный Крым, Россия) // Успехи современного естествознания, 2014. – №12. – С.57–62.

3. Гусев А.И. Геохимия и петрология вулканических пород карьера Петропавловского (Центральный Крым, Россия) // Успехи современного естествознания. – 2014. – №12. – С. 554-560.

 Лебединский В.И., Макаров Н.Н. Вулканизм Горного Крыма. – Киев, 1962. – 143 с.

5. Маракушев А.А. Термодинамические факторы образования рудной зональности скрытого оруденения на основе зональности гидротермальных месторождений. – М.: Наука, 1976. – С. 36–51.

6. Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G. Petrogenetic evolution of late Cenozoic, postcollision volcanism in western Anatolia, Turkey // Journal of Volcanology and Geothermal Research. – 2000. – V. 102. – P. 67-95.

7. Anders E., Greevesse N. Abundences of the elements: meteoric and solar // Geochim. Cosmochim. Acta. – 1989. – V. 53. – Pp. 197-214.

8. DePaolo, D.J., Daley, E.E. Neodymium isotopes in basalts of the southwest Basin and Range and lithosphere thinning during continental extension// Chem. Geol. – 2000. - V. 169. - Pp. 157-185.

9. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim Comochim Acta. 1999. – V.63. – N3/4. – Pp. 489–508.

10. Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Soc. America Bulletin, 1989. – V.101. – Pp. 635–643.

11. Meijers M.J.M., Vrouwe B., van Hinsbergen D.J.J. et all. Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo0subduction zone configuration of the Black Sea region // Lithos, 2010. - V. 119. - Pp. 412-426.

12. Villaseca C., Barbero L., Herreros V. A re-examination of the typology of peraluminous granite types in the intracontinental orogenic belts // Trans. of Royal Soc. of Edinburg Earth Science, 1998. –V. 89. – P. 113–119.