ХИМИЧЕСКИЕ НАУКИ

УДК 546.87321:548.734 РЕНТГЕНОГРАФИЧЕСКИЕ ХАРАКТЕРИСТИКИ СЛОЖНЫХ МАНГАНИТОВ

Матаев М.М., Нукетаева Д.Ж., Абдраймова М.Р., Нурбекова М.А., Турсинова Ж.И.

Казахский государственный женский педагогический университет, Алматы, e-mail: abdraimova87@mail.ru

Методом высокотемпературной твердофазной реакции синтезированы сложные оксидные фазы Методом высокотемпературной твердофазной реакции синтезированы сложные оксидные фазы составов Bi₂CaMn₄O₁₀. Bi₂SrMn₄O₁₀, Bi₂BaMn₄O₁₀. Рентгенофазовым анализом впервые исследованы структура манганитов, определены типы кристаллических решеток, параметры элементарных ячеек, рентгенографические и пикнометрические плотности: Bi₂CaMn₄O₁₀ – a=5,68, c=23,2Å, V_{аляч.}=748,2Å³, Z=2, ρ_{perr} =4,52, ρ_{mukn} =4,55г/см³, Bi₂SrMn₄O₁₀ – a=7,56, в=8,56, c=5,72Å, V_{аляч.}=370,2Å³, Z=2, ρ_{perr} =7,98, ρ_{intern} =7,98, r/cм³, Bi₂BaMn₄O₁₀ – a=5,68, c=23,5Å, V_{аляч.}=757,8Å³, Z=4, ρ_{perr} =7,16, ρ_{mukn} =7,20г/см³. Показан взаймосвяз параметров кристаллической решетки манганитов с электронной конфигурацией Mn³⁺ иона. Изучены элетрофизические свойства манганитов при комнатной температуре.

Ключевые слова: манганиты, рентгенофазовый анализ, кристаллическая решетка, плотность.

RADIOGRAPHIC CHARACTERISTICS OF COMPLEX MANGANATES

Mataev M.M., Nuketaeva D.Zh., Abdraymova M.R., Nurbekova M.A., Tursinova J.I. Kazakh State Women's Pedagogical University, Almaty, e-mail: abdraimova87@mail.ru

By high-temperature solid-state reaction synthesized complex oxide phase compositions Bi₂CaMn₄O₁₀, Bi₂SrMn₄O₁₀, Bi₂VaMn₄O₁₀. X-ray diffraction for the first time to study the structure of manganites, identified types of crystal lattices, unit cell parameters, and radiographic density pycnometry: $Bi_{2}CaMn_{4}O_{10}$ - a = 5.68, with = 23,2Å, V_{elyach} = 748,2 Å3, Z = 2, ρ_{rent} = 4.52, ρ_{pikn} = 4,55g/cm3, Bi₂SrMn₄O₁₀ - a = 7.56, a = 8.56, a = 5.72 Å, V_{elyach} = 370,2 Å3, Z = 2, ρ_{rent} = 7.98 g/cm3, s = 5.68 Bi₂VaMn₄O₁₀ - u = 7.56, a = 8.56, a = 5.72 Å, V_{elyach} = 370,2 Å3, Z = 2, ρ_{rent} = 7.93, ρ_{pikn} = 7.98 g/cm3, s = 5.68 Bi₂VaMn₄O₁₀ with = 23,5 Å, V_{elyach} = 757,8 Å3, Z = 4, ρ_{rent} = 7, 16, ρ_{pikn} = 7.20g/cm3. Vzaymosvyaz shows the lattice parameters of the manganites with electron configuration mn 3 + ion. Electroficial parameters of the manganites with electron configuration

mn 3 + ion. Eletrofizicheskie studied properties of the manganites at room temperature.

Keywords: manganites, x-ray phase analysis, the lattice density.

В современной электронике используется полупроводниковые материалы, функционирование которых обеспечивается зарядом электрона. Возрастающие требования к характеристикам приборов электроники ставят задачу поиска и внедрения в практику альтернативных материалов, работающих на неклассических принципах. Основой электроники будущего могут стать приборы спинтроника, в работе которых помимо заряда электрона участвует его спин [1].

Перовскитоподобные манганиты представляют интерес для ряда практических применений таких, например, как катализаторы, катоды топливных элементов, датчики магнитного поля. Необычное сочетание свойств в этих соединениях возникает при гетеровалентном допировании, которое приводит к стабилизации катионов марганца в смешанном зарядовом состоянии и значительному изменению свойств, в первую очередь, параметров электронного транспорта. Так, при замещении кальция трехзарядными катионами R³⁺ электропроводность Ca_{1-x}R_xMnO₃ возрастает на 1-2 порядка. При этом одновременно достигаются довольно высокие значения отрицательной термоЭДС. Дополнительное влияние на соотношение зарядовых форм марганца оказывают процессы диспропорционирования, интенсифицирующиеся при повышении температуры [1-7].

Кроме того, нагревание, как в процессе синтеза, так и при последующих термообработках, неизбежно приводит к частичной потере кислорода, образованию вакансий в кислородной подрешетке и увеличению содержания ионов марганца с пониженным зарядом [8]. Таким образом, кислородные вакансии играют существенную роль в зарядовом равновесии и формировании комплекса свойств манганитов. В [9] было исследование структурных, проведено магнитных и электрических свойств анион – дефицитных составов La_{0.7}Sr_{0.3}MnO₃₋₆ (LSM). Было установлено, что в концентрационном интервале $0.075 \le \delta \le 0.1$ происходит переход от ромбоэдрической (пр. гр. R_{3c} , Z = 2) к орбитально упорядоченной О'-ромбической (пр. гр. Puma, Z=4) структуре, что достаточно странно, так как наличие вакансий кислорода должно нарушать симметрию в расположении d-орбиталей ионов марганца и препятствовать установлению орбитального упорядочения. Следует заметить, что области гомогенности по кислороду в манганитах являются довольно

узкими, и зачастую авторы ограничиваются лишь описанием условий синтеза, либо измерениями конкретного содержания кислорода в исследуемых образцах, что затрудняет анализ зависимостей свойств от степени дефектности[10]. В данной работе изучены условия получения и рентгенографические характеристики новых классов сложных смешанных манганитов висмута, в которых Bi⁺³ замещается на двухвалентные ионы.

Экспериментальная часть

Новые поликристаллические сложные манганиты висмута синтезировали по керамической технологии. В качестве исходных компонентов использовали оксид висмута (III) марки («х.ч»), карбонат кальция, стронция и бария («ос.ч.»), оксид марганца (III) марки («х.ч»). Твердофазный синтез проводили на основании термических данных исходных компонентов и учитывали условия Таммана для керамических реакций [11,12]. Предварительно отоженные в муфельной печи при температуре 400°С в течение одного часа стехиометрический рассчитанные смеси исходных компонентов тщательно

перемешали и перетирали в агатовый ступке, помещали в алундовые тигли и отжигали в силитовой печи. Отжиг проводили в два этапа. Первый этап – 600°С в течение 48 часов, второй этап – 800°С в течение 20 часов [13,14].

Образование новых фаз контролировали методом рентгенофазового анализа, который проводили на рентгеновском дифрактометре X'Pert MPD PRO (PANalytical). Условия съемки: CuK – излучение, Ni – фильтр, U=30 кВ, I=10 мА, скорость вращения 1000 имп / с, постоянная времени $\tau=5$ с, $2\theta=10^{\circ}-90^{\circ}$. Дифракционные максимумы оценивались по сто бальной шкале. Рентгенограммы синтезированных поликристаллических порошков индицировали методом гомологии (гомолог - искаженный структурный тип перовскита). Пикнометрическую плотность манганитов определяли по методике[15]. Индиферентной жидкостью служил толуол. Плотность каждого манганита измеряли 4 - 5 раз и данные усредняли. В таблице приведены результаты индицирования рентгенограмм манганитов.

Таблица1

I/I ₀	d _{эксп.} , Å	10 ⁴ /d ² _{эксп}	hkl	10 ⁴ /d ² _{reop}					
Bi ₂ CaMn ₄ O ₁₀									
46	5,808	296,5	004	297,5					
13	5,077	387,9	102	383,9					
8	4,552	483,4	103	476,8					
10	4,037	614,4	110	619,0					
15	3,869	668,0	006	669,0					
16	3,790	696,2	112	693,0					
31	3,553	792,3	113	786,0					
33	3,187	985,8	106	978,0					
100	3,050	1075	115	1083					
25	2,888	1190	008	1190					
13	2,839	1241	200	1238					
16	2,753	1319	202	1312					
46	2,667	1406	203	1405					
23	2,575	1508	009	1506					
21	2,420	1708	213	1715					
20	2,356	1802	118	1809					
20	2,292	1904	206	1907					
51	2,233	2006	215	2012					
21	2,034	2421	208	2428					
38	1,937	2669	001	2678					
25	1,8991	2771	224	2773					
16	1,846	2934	225	2940					

Индицирование рентгенограмм синтезированных фаз

V3

130

ХИМИЧЕСКИЕ НАУКИ

I/I ₀	d _{эксп.} , Å	$10^{4}/d^{2}_{_{3KCII}}$	hkl	$10^4/d_{reop}^2$					
33	1.795	3104 310		3096					
11	1.755	3243	305	3250					
11	1.712	3385	314	3393					
26	1.703	3447	306	3455					
30	1,675	3566	315	3560					
Bi ₂ SrMn ₄ O ₁₀									
28	4 004	623.8	002	632.0					
15	3 718	723.4	110	723.0					
18	3 371	880.0	111	881.0					
21	3 186	985.2	102	943.0					
35	3.118	1029	012	1026					
100	2 812	1265	200	1280					
48	2,722	1350	112	1355					
25	2.643	1432	201	1438					
8	2 490	1613	020	1612					
10	2,429	1695	210	1685					
8	2.327	1827	013	1825					
25	2 292	1904	202	1912					
15	2.222	2085	121	2090					
11	2,134	2146	113	2145					
11	2,080	2311	212	2315					
30	1.989	2528	004	2528					
	-,, -,	Bi BaMn O							
			0.01						
46	5,869	290,3	004	290,0					
26	3,782	699,1	112	692,0					
20	3,625	760,9	105	762,5					
16	3,576	781,9	113	782,0					
46	3,302	917,0	114	909,0					
93	3,062	1066	115	10/2					
100	2,940	1157	008	1160					
63	2,853	1228	200	1238					
23	2,754	1318	202	1311					
30	2,565	1520	204	1528					
33	2,429	1695	205	1091					
30	2,411	1/19	213	1/11					
20	2,558	1829	214	1838					
20	2,290	189/	200	1000					
20	2,233	2006	215	1998					
20	2,128	2210	210	2201					
20	2,045	2390	208	2398					
<u> </u>	1,901	2000	0012	2010					
40	1,743	2040	223	2039					
20	1,070	2//3	224	2/00					
50	1,631	2920	223	2929					
20	1,/90	2275	214	2205					
20	1,/21	25/3	0014	2552					
16	1,000	2740	216	2740					
56	1,033	2000	217	2002					
26	1,303	3990 /105	222	3983					
∠0	1,301	4103	544	407/					

131

На основании индицирования рентгенограмм синтезированных соединении установлено, что манганиты кальция и бария

кристаллизуются в тетрагональной сингонии, манганит стронция в ромбической решетке.

Таблица2

Соединение	Тип сингонии	a, Å	b, Å	c, Å	V _{элем.яч} , Å ³	Z	ρ _{рентг} г/с	ρ _{пикн} м ³
Bi ₂ CaMn ₄ O ₁₀	Тетрагон	5,68		23,2	748,2	2	4,52	4,55
Bi ₂ BaMn ₄ O ₁₀	Тетрагон	5,68		23,5	757,8	4	7,16	7,20
Bi ₂ SrMn ₄ O ₁₀	Ромб	7,56	8,56	5,72	370,2	2	7,93	7,98

Кристаллохимические характеристики манганитов

Корректность результатов индицирования манганитов подтверждаются хорошим соответствием экспериментальных и расчетных значений обратных величин квадратов межплоскостных расстоянии (10⁴ / d²), удовлетворительной согласованностью величин рентгеновской и пикнометрической плотностей.

Заключение

Конфигурация 3d⁴ электронов иона Mn³⁺ в октаэдросимметрическом поле O²⁻ находятся dɛ³ и d¹_γ, т.е. характеризуются d²_x v или d²_z функциями. Если d²_x v аполнены, то катион по оси *z* сильно экранируется, это приведет к кулоновским взаимодействиям с лигандами по оси *x*, *y*, из – за этого октаэдр MnO₆ вытягиваются по оси *z*, тогда параметры будут *c*>*a* отношениях.

тогда параметры будут c > a отношениях. Если $d_{x^{2}}^{2}$ состояние заполнены тогда октаэдр MnO₆ по оси *с* уменьшается, зависимость c < a состояний, как в случае фазы со стронцием.

Исследование электрофизических свойств спрессованных при давлении 15кг/см² таблеток манганитов при комнатной температуре, показали следующие результаты диэлектрической проницаемости (ε) и сопротивления (R). Для фазы Bi₂CaMn₄O₁₀ ε =165,9; R=69 Ком и Bi₂SrMn₄O₁₀ ε =78,5; R=3,4 Мом. По – видимому высокие значения (ε), можно объяснить влиянием Bi⁺³ ионов на локальную поляризацию ионов Mn³⁺. Вследствие этого они должны иметь высокий коэффициент преломления и в оптической среде высокую электростабильность.

Список литературы

1. Иванов В.А., Аминов Т.Г., Новогорцев В.М., Калинников В.Т. Спинтроника и спинтронные материалы // Известия Академии наук. Серия химическая. – 2004. – № 11. – С. 2255-2303. 2. Wu M.D., Xu L.N, Weng D. The NO selective redaction on the $La_{1,x}sr_xMnO$ catalysts // Catalysis Today. – 2004. – Na90 (3-4). – P 207-213.

3. Leskova J.V., Nikiforov A.E., Gonchar L.E., Popov S.E., Mozhegorov A.A. Hyperfine interactions in half-doped and 2/3-doped charge-ordering manganites // Solid State Phenomena – 2009. – Vol. 152-153. – PP. 112-115.

4. Moskvin A.S. One-center charge transfer transitions in manganites // Phys. Rev. B. - 2002. - V.65. - P. 205113 (9 pages).

5. Nucara A., Miletto Granazio F., Radovic M., Vitucci F.M, Maselli P. « Optical investigation of LaMnO₃ thin films: a stady of the 2-eV band» // Eur.Phys.J.B. – 2011. – Vol 79. – P. 435-411.

6. Valencia Z. Konstantinovic D. Schmitz A. Gaupp L.I. Balcells, and B. of interest for spintronic applications // Phys. Rev. $B_{\rm r}-2011.-V.$ 84. – P. 024413.

7. Yang F., Mechin L., Routoure Jean-Marc, Guillet B., Radoslav A. Low-noise La0 7Sr03MnO3 thermometers for uncooled bolometric applications // J. of Applied physics. – 2006. – Vol. 99. – P. 024903.

 $8.\,Mozzati$ M.C., Malavasi L., Azzoni C.B., Flor G. Magnenic properties of nanostructured sodiudoped lanthanum manganites // J. Mang. And Magn. Mater. – 2004. – P. 1579-1580.

9. Abdelmoula N., Guidara K., Cheikh-Rouhou A., Dhahri E., and. Joubert J.C. Effects of the oxygen nonstoichiometry on the physical properties of La0.7Sr0.7MnO3- δ manganites (0 $\leq \delta \leq 0.15$) // Journal of Solid State Chemistry. – 2000. – Vol. 151. – No. 1. – PP. 139–144.

10. Леонидов Е.И., Марков А.А., Патрикеев М.В., Леонидов И.А., Кожевников В.Л. Кислородная нестехиометрия и термодинамические свойства манганитов Calsr, Ln_yMnO_{3.5} // Журнал физической химии. – 2011. – T.85, №3. –C.405-410.

11. Матаев М.М. Сложные висмутиты РЗЭ и стронция // Вестник КазНУ им. Аль-Фараби. – 2002. – №2. – С.143-146.

12. Mataev M.M., Myrzahmetova N.O., Zhumanova N.A., Kuanysheva Zh.K., Nurbekova M.A., Abdraimova M.R. Synthesis and X-Ray Scattering Analysis of Complex Manganites and Ferrites // World Applied Sciences Journal. – 2013. – №21(7). – P. 1032-1035.

13. Матаев М.М., Абдраймова М.Р. Экспериментальные теплоемкости сложных ферритов // Вестник Казахского Государственного Женского Педагогического Университета. – 2009. – №1. – С.128-131.

14. Матаев М.М., Досжанова Г. // Вестник Казахского Государственного Женского Педагогического Университета. – 2009. – №1. – С.131-135.

15. Кивилис С.С. Техника измерений плотности жидкостей и твердых тел. – М.: Стандартгиз, 1959. – 191 с.

ADVANCES IN CURRENT NATURAL SCIENCES №9, 2014