УДК 67

ВОЗМОЖНЫЕ ПРОСТРАНСТВЕННЫЕ КОМПОНЕНТЫ СОСТОЯНИЙ ДЕТЕРМИНИСТИЧЕСКИХ МОДУЛЯРНЫХ СТРУКТУР С КРИСТАЛЛИЧЕСКОЙ КОМПОНЕНТОЙ В КОМПОЗИЦИОННЫХ МАТЕРИАЛАХ

Иванов В.В.

ФГУП ОКТБ «ОРИОН», Новочеркасск E-mail: valivanov11@mail.ru

Обсуждаются возможные пространственные компоненты состояний детерминистических модулярных структур с кристаллической компонентой в композиционных материалах.

Ключевые слова: структурное состояние, кристаллическая компонента, наноструктура, фрактальная структура

POSSIBLE SPACE COMPONENTS OF THE DETERMINISTIC MODULAR STRUCTURES STATES WITH THE CRYSTAL COMPONENT INTO COMPOSITIONAL MATERIALS

Ivanov V.V.

FGUE SDTU «ORION», Novocherkassk E-mail: valivanov11@mail.ru

The possible space components of the deterministic modular structures states with the crystal component into compositional materials were discussed.

Keywords: structural state, crystal component, nanostructure, fractal structure

Предположим, что состояния в случае детерминистических модулярных структур в каждой ячейке-параллелепипеде структурированного 3D пространства определяются возможными кристаллическими г, наноразмерными п и фрактальными f компонентами с помощью задания соответствующих генераторов [1-6]. Возможные структурные состояния в 1D пространстве могут быть комбинаторно перечислены и представлены следующей квадратной матрицей А

$$\begin{array}{c} (\mathrm{1D}) \quad \| r \cdot n_r \, f_r \| \\ A \quad = \| r_n \, n \cdot f_n \| = \| a_{ij} \| \\ \| r_f \, n_f \, f \cdot \| \end{array}$$

С учетом всех структурно совместимых сочетаний из двух компонент перечислим основные классы вероятных структурных состояний в 2D пространстве [1, 2]: кристаллический (r r), кристаллический наноразмерный (r n), кристаллический фрактальный (r f), фрактальный гибридный (f f), фрактальный наноразмерный (f n) и наноразмерный (n n). Квадратная ма-

трица возможных состояний $A = ||a_{ij}||a_{ij}||||$ в 2D пространстве

$$\mathbf{A} = \begin{pmatrix} \mathbf{r} \parallel \mathbf{a}_{ij} \parallel & \mathbf{n}_{\mathbf{r}} \parallel \mathbf{a}_{ij} \parallel & \mathbf{f}_{\mathbf{r}} \parallel \mathbf{a}_{ij} \parallel \\ \mathbf{r}_{\mathbf{n}} \parallel \mathbf{a}_{ij} \parallel & \mathbf{n} \parallel \mathbf{a}_{ij} \parallel & \mathbf{f}_{\mathbf{n}} \parallel \mathbf{a}_{ij} \parallel \\ \mathbf{r}_{\mathbf{f}} \parallel \mathbf{a}_{ij} \parallel & \mathbf{n}_{\mathbf{f}} \parallel \mathbf{a}_{ij} \parallel & \mathbf{f} \parallel \mathbf{a}_{ij} \parallel \end{pmatrix} = \| \mathbf{a}_{ij} \| \mathbf{a}_{ij} \| \|$$

содержит всего $N = 3^{2d} = 81$ ориентационно различимых состояний из которых 45 - состояния разного вида, принадлежащие шести указанным выше классам. Тогда основные классы вероятных структурных состояний, содержащие хотя бы одну кристаллическую компоненту в 3D пространстве, следующие [1, 2]: кристаллический (r r r), кристаллический наноразмерный (r r n), кристаллический фрактальный (r r f), кристаллический фрактальный гибридный (r f f), кристаллический фрактальный наноразмерный (r f n) и наноразмерный кристаллический (r n n). Квадратная матрица возможных состояний $A = ||a_{ij}||a_{ij}||a_{ij}||a_{ij}|||||$ в 3D пространстве содержит всего $N = 3^{2d} = 729$ ориентационно различимых состояний,

из которых 109 — состояния разного вида, принадлежащие шести указанным выше классам. Перечислим возможные структуры и их симметрию [7], охарактеризуем представителей этих видов состояний, соподчиненные (€) и сопряженные им (*) состояния.

1 *Класс кристаллический (r r r)*, структуры $R_{,j}^{3}$ (симметрия пространственных групп $G_{,j}^{3}$):

1) (r r r) - 3D-кристалл из атомных цепочек, слоев, $(r r r)^* = (r r r), (r r r) \in (n, n, n)$,

2) (r r r_n) — 3D-кристалл из 1D-нанофрагментов, (r r r_n)* = (r r n_r), (r r r_n) \in (n, n, n),

3) $(r r r_f) - 3D$ -кристалл из 1D локальных фракталов, $(r r r_f)^* = (r r f_r)$, $(r r r_f) \in (n_r n_r n_f)$,

4) $(r r_n r_n) - 3D$ -кристалл из 2D наноразмерных частиц, $(r r_n r_n)^* = (r n_r n_r)$, $(r r_n r_n) \in (n_r n n)$,

5) (г г_n г_f) — 3D-кристалл из 1D-нанофрагментов и 1D локальных фракталов, (г г_n г_f)* = (г п_r г_f), (г г_n г_f) \in (n_r n n_f),

6) (г r_f r_f) — 3D-кристалл из локальных 2D фракталов (детерминистических фрактальных 2D структур), $(r_f r_f)^* = (f_r f_r), (r_f r_f) \in (n, n)$.

7) $(r_n r_n r_n) - 3D$ -кристалл из наноразмерных частиц, $(r_n r_n r_n)^* = (n_r n_r n_r), (r_n r_n r_n) \in (n n n).$

8) $(r_n r_n r_f) - 3D$ -кристалл из 2D-нанофрагментов и 1D локальных фракталов, $(r_n r_n r_f)^* = (n_r n_r f_r), (r_n r_n r_f) \in (n n n_f),$

9) $(r_n r_f r_f) - 3D$ -кристалл из локальных наноразмерных 2D фракталов (детерминистическихфрактальных 2D структур), $(r_n r_f r_f)^* = (n_r f_r f_r), (r_n r_f r_f) \in (n_r n_r r_f)$.

 $(r_n r_f r_f)^* = (n_r f_r f_r), (r_n r_f r_f) \in (n n_r n_r).$ 10) $(r_f r_f r_f) - 3D$ -кристалл из локальных 3D фракталов (детерминистическая фрактальная 3D структура), $(r_f r_f r_f)^* = (f_r f_r f_r), (r_r r_r) \in (n, n, n)$

 $(\mathbf{r_r}\,\mathbf{r_r}\,\mathbf{r_r})\in (\mathbf{n_r}\,\mathbf{n_r}\,\mathbf{n_r}).$ 2 Класс кристаллический наноразмерный (r r n), структуры $\mathbf{R_{rm}}^2$ (симметрия пространственных $\mathbf{G^3}_3$, слоевых $\mathbf{G^3}_2$ или ленточных групп $\mathbf{G^3}_{2.1}$):

1) (r r n) = 3D структура из упорядоченных цепочек нанообъектов в 2D пространстве, $(r r n)^* = (r r n), (r r n) \in (n, n, n),$

2) (г г n_r) – 3D структура из упорядоченных цепочек кристаллических нанообъектов в 2D пространстве, (г г n_r)* = (г г r_n), (г г n_r) ∈ (n_r n_r , n_r),

3) $(r r n_f) - 3D$ структура из упорядоченных цепочек фрактальных нанообъектов в 2D пространстве, $(r r n_f)^* = (r r f_n)$, $(r r n_f) \in (n_n n_f)$,

4) $(r r_n n) - 3D$ структура из 1D-фрагментов нанообъектов, $(r r_n n)^* = (r n_r n), (r r_n n) \in (n_r n n),$

5) $(r r_n n_r) - 3D$ структура из 1D-фрагментов кристаллических нанообъектов, $(rrn)^* = (rnr)$, $(rrn) \in (nnn)$,

тов, $(r r_n n_r)^* = (r n_r r_n), (r r_n n_r) \in (n_r n n_r),$ 6) $(r r_n n_r) - 3D$ структура из 1D-фрагментов фрактальных нанообъектов,

 $(r r_n n_f)^* = (r n_r f_n), (r r_n n_f) \in (n_r n n_f),$

7) (г r_f n) – 3D структура из нанообъектов, упорядоченных по фрактальному и кристаллическому закону (г r_f n)* = (r f_r n), (г r_f n) \in (n, n, n),

8) (г $r_f n_r$) – 3D структура из кристаллических нанообъектов, упорядоченных по фрактальному и кристаллическому закону, ($r_f n_r$)* = ($r_f r_n$), ($r_f n_r$) ∈ ($n_r n_f n_r$),

19) (г r_f n_f) — 3D структура из фрактальных нанообъектов, упорядоченных по фрактальному и кристаллическому закону, (r r n)* = (r f f) (r r n) \in (n n n)

 $(r_{r_n}, n_r)^* = (r_{r_n}, n_r), (r_{r_n}, n_r) \in (n_r_{r_n}, n_r).$ 10) $(r_{r_n}, n_r) - 3D$ структура из 1D-фрагментов нанообъектов, упорядоченных в 2D пространстве, $(r_{r_n}, r_{r_n}, n)^* = (n_{r_n}, n_r), (r_{r_n}, n) \in (n, n, n).$

 $(r_n r_n n) \in (n n n),$ 11) $(r_n r_n n_r) - 3D$ структура из 1D-фрагментов кристаллических нанообъектов, упорядоченных в 2D пространстве, $(r_n r_n)^* = (n_n r_n), (r_n r_n) \in (n n n),$

 $(r_n r_n r_n)^* = (n_r n_r r_n), (r_n r_n r_n) \in (n n r_r),$ 12) $(r_n r_n r_n) = (n n r_r),$ 12) $(r_n r_n r_n) = (n n r_r),$ 1D-фрагментов фрактальных нанообъектов, упорядоченных в 2D пространстве, $(r_n r_n r_n)^* = (r_n r_n r_n), (r_n r_n r_n) \in (n n r_n),$

 $(r_n r_n n_f)^* = (n_r n_r f_n), (r_n r_n n_f) \in (n n n_f),$ 13) $(r_n r_f n) - 3D$ структура из нанообъектов, упорядоченных по фрактальному закону в 1D пространстве, $(r_n r_f n)^* = (n_r f_r n),$ $(r_n r_n) \in (n n_n n)$

 $(r_n r_f n) \in (n n_f n),$

14) $(r_n r_f n_r) - 3D$ структура из кристаллических нанообъектов, упорядоченных по фрактальному закону в 1D пространстве, $(r_n r_f n_r)^* = (n_r f_r r_n), (r_n r_f n_r) \in (n n_f n_r),$

15) $(r_n r_f n_f)^n - 3D$ структура из фрактальных нанообъектов, упорядоченных по фрактальному закону в 1D пространстве, $(r_n r_f n_f)^* = (n_r f_r f_n)$, $(r_n r_f n_f) \in (n_r f_n f_n)$.

16) $(r_f r_f n) - 3D$ структура из нанообъектов, упорядоченных по фрактальному закону в 2D пространстве, $(r_f r_f n)^* = (f_r f_r n)$, $(r_f r_f n) \in (n_f n_f n)$,

17) $(r_f r_f n_r) - 3D$ структура из кристаллических нанообъектов, упорядоченных по фрактальному закону в 2D пространстве, $(r,r,n)^* = (f,f,r)$ $(r,r,n) \in (n,n,n)$

 $(r_{\rm f} \, r_{\rm f} \, n_{\rm f})^* = (f_{\rm r} \, f_{\rm r} \, r_{\rm n}), (r_{\rm f} \, r_{\rm f} \, n_{\rm r}) \in (n_{\rm f} \, n_{\rm f} \, n_{\rm r}),$ 18) $(r_{\rm f} \, r_{\rm f} \, n_{\rm f}) - 3D$ структура из фрактальных нанообъектов, упорядоченных по фрактальному закону в 2D пространстве, $(r_{\rm f} \, r_{\rm f} \, n_{\rm f})^* = (f_{\rm r} \, f_{\rm r} \, f_{\rm n}), (r_{\rm f} \, r_{\rm f} \, n_{\rm f}) \in (n_{\rm f} \, n_{\rm f} \, n_{\rm f}).$

3 Класс кристаллический фрактальный (r r f), структуры R_{rrf}^{3} (симметрия пространственных G_{3}^{3} , слоевых G_{2}^{3} , ленточных $G_{2,1}^{3}$, или точечных слоевых групп $G_{2,0}^{3}$):

- 1) (r r f) 3D структура из упорядоченных в 2D пространстве 1D фракталов, (r r f)* = (r r f),
- 2) $(r r f_r) 3D$ структура из упорядоченных в 2D пространстве 1D детерминистических фракталов, $(r r f_{r})^{*} = (r r r_{r}),$
- 3) $(r r f_n) 3D$ структура из упорядоченных в 2D пространстве 1D фрактальных нанообъектов, $(r r f_{r})^* = (r r n_{s})$,
- 4) $(r r_n f) 3D$ структура из слоев 1D фракталов и 1D нанофрагментов, упорядоченных в 1D пространстве, $(r r_n f)^* =$ $(r n_r f),$
- $(r_n f_n) 3D$ структура из слоев 1D детерминистических фракталов и 1D нанофрагментов, упорядоченных в 1D пространстве, $(r r_n f_r)^* = (r n_r r_f)$,
- 6) $(\vec{r}_n f_n) 3D$ структура из слоев 1D фрактальных нанообъектов и 1D нанофрагментов, упорядоченных в 1D пространстве, $(r r_n f_n)^* = (r n_r n_f),$

7) (r $r_{\rm f}$ f) – 3D структура из 2D фракталов, упорядоченных в 1D пространстве, $(r r_f f)^* = (r f_f f),$

8) (r $r_{\rm s}$ f) – 3D структура из 2D детерминистических фракталов, упорядоченных в 1D пространстве, $(r r_f f_r)^* = (r r_f f_r)$,

9) (r r, f_n) – 3D структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве, $(r \, r_{s} \, f_{s})^{*} = (r \, f_{s} \, n_{s})$.

10) $(r_n r_n f) - 3D$ структура из 2D нанообъектов, упорядоченных по фрактальному

закону, $(r_n r_n f)^* = (n_r n_r f)$, 11) $(r_n r_n f_r) - 3D$ структура из 2D нанообъектов, упорядоченных по закону детерминистических фракталов, $(r_n r_n f_r)^* =$

12) $(r_n r_n f_n) - 3D$ структура из 2D нанообъектов, упорядоченных по закону фрактальных нанообъектов, $(r_n r_n f_n)^* =$

13) $(r_n r_f) - 3D$ структура из 2D фракталов, упорядоченных в 1D пространстве нанофрагментов, $(r_n r_f)^* = (n_r f_r f)$,

 $(r_n, r_f) = 3D$ структура из 2D детерминистических фракталов, упорядоченных в 1D пространстве нанофрагментов по фрактальному закону, $(r_n r_f f_r)^* = (n_r r_f f_r)$,

15) $(r_n r_f f_n) - 3D$ структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве нанофрагментов по фрактальному закону, $(r_n r_f f_n)^* = (n_r f_r n_f)$.

16) $(r_f r_f f) - 3D$ структура из 3D локальных фракталов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f r_f f)^* = (f_r f_r f),$

17) $(r_{r_r} r_{r_r} f_{r_r}) - 3D$ структура из 3D локальных фракталов, упорядоченных в 1D пространстве по закону детерминистических

фракталов, $(r_f r_f f_r)^* = (f_r f_r r_f)$, 18) $(r_f r_f f_n) - 3D$ структура из 3D локальных фракталов, упорядоченных в 1D пространстве по закону фрактальных нанообъектов, $(r_f r_f f_p)^* = (f_r f_r n_f)$.

4 Класс кристаллический фрактальный гибридный (rff), структуры R_{rff}^{-3} (симметрия пространственных G_3 , слоевых G_2 ,

ленточных $G_{2,1}^3$):
1) (r f f) – 3D структура из упорядоченных 2D гибридных фракталов, (r f f)* = (r f f),

2) (r f f) - 3D структура из упорядоченных 2D детерминистических фракталов, $(r f f_{.})^* = (r f r_{.}),$

3) (r f f_n) -3D структура из упорядоченных 2D фрактальных нанообъектов, $(r f f_n)^* = (r f n_f),$

4) (r f_r f_r) – 3D структура из упорядоченных 2D детерминистических фракталов, $(r f_{r} f_{r})^* = (r r_{f} r_{f}),$

5) (r f_r f_n) – 3D структура из упорядоченных 1D детерминистических фракталов и 1D фрактальных нанообъектов, $(r f_1 f_2)^* =$

 $\binom{1}{6}$ (r f_n f_n) – 3D структура из упорядоченных $\binom{1}{2}$ фрактальных нанообъектов, $(r f_n f_n)^* = (r n_f n_f).$

7) (rg f f) – 3D структура из 2D гибридных фракталов, упорядоченных в 1D пространстве нанофрагментов, $(r_n f f)^* = (n_r f f)$,

8) $(r_n f f_r) - 3D$ структура из 2D детерминистических фракталов, упорядоченных в 1D пространстве нанофрагментов, $(r_n f f_r)^* = (n_r f r_f),$

9) $(r_n f f_n) - 3D$ структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве нанофрагментов, $(r_n f f_n)^* =$ $(n_r f n_f)$

10) $(r_n f_r f_r) - 3D$ структура из 2D детерминистического фрактала, упорядоченного в 1D пространстве, $(r_n f_r f_r)^* = (n_r r_r r_r)$,

11) (r, f, f) – 3D структура из 1D детерминистических фракталов и 1D фрактальных нанообъектов, упорядоченных в 1D

пространстве, $(r_n f_r f_n)^* = (n_r r_f n_f)$, 12) $(r_n f_n f_n) - 3D$ структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве, $(r_n f_n f_n)^* = (n_r n_f n_f)$.

13) (r_s f f) – 3D структура из 2D гибридных фракталов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f f f)^* =$ $(f_r f f),$

14) $(r_f f f_r) - 3D$ структура из 2D детерминистических фракталов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f f f_r)^* = (f_r f r_f),$

15) $(r_{s} f f_{s}) - 3D$ структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f f f_n)^* = (f_r f n_f),$

16) $(r_f f_r f_r) - 3D$ структура из 2D детерминистического фрактала, упорядоченного в 1D пространстве по фрактальному закону,

 $(r_{f} f_{r} f_{r})^* = (f_{r} r_{f} r_{f}),$

 $(r_{f}, f_{r}, f_{n}) - 3D$ структура из 1D детерминистических фракталов и 1D фрактальных нанообъектов, упорядоченных в 1D пространстве по фрактальному закону, $(r_{f} f_{r} f_{n})^{*} = (f_{r} r_{f} n_{f}),$

18) $(r_f f_n f_n) - 3D$ структура из 2D фрактальных нанообъектов, упорядоченных в 1D пространстве по фрактальному закону,

 $(\mathbf{r}_{_{\mathrm{f}}}\mathbf{f}_{_{\mathrm{n}}}\mathbf{f}_{_{\mathrm{n}}})^* = (\mathbf{f}_{_{\mathrm{f}}}\mathbf{n}_{_{\mathrm{f}}}\mathbf{n}_{_{\mathrm{f}}}).$ 5 Класс кристаллический фрактальный наноразмерный (rfn), структуры R_{rfn} (симметрия пространственных G_{3}^{3} , слоевых G_{2}^{3} , ленточных G_{2}^{3} , стержневых групп G_{1}^{3}):

1) (r f n) $-3\overline{D}$ фрактальная структура из упорядоченных нанообъектов, $(r f n)^* =$

(r f n),

2) (r f n_r) – 3D фрактал из упорядоченных 1D-фрагментов структуры, $(r f n)^* =$ $(r f r_n),$

3) (r f n_s) – 3D фрактал из упорядоченных 1D локальных фракталов, $(r f n_s)^* =$ (r f f),

- 4) (r f_n n) 3D фрактальный нанообъект из упорядоченных 1D нанообъектов, $(r f_n)^* = (r n_n),$
- (5) (r f n) 3D фрактальный нанообъект из упорядоченных 1D-нанофрагментов структуры (r $f_n n_r$)* = (r $n_r r_n$),
- 6) (r $f_n n_f$) 3D фрактальный нанообъект из упорядоченных 1D локальных фракталов, $(r f_n n_f)^* = (r f_n n_f),$
- 7) (r f n) 3D структура из 1D детерминистических фракталов и упорядоченных нанообъектов, $(r f_r n)^* = (r r_f n)$,
- 8) $(r f_n) 3D$ структура из 1D детерминистических фракталов и упорядоченных 1D-нанофрагментов структуры, $(r f_n)^* =$

9) (r f. n.) – 3D структура из 1D детерминистических фракталов и упорядоченных 1D локальных фракталов, $(r f_r n_r)^* = (r r_r f_r)$,

- 10) (r_n f n) 3D фрактальная структура из нанообъектов, упорядоченных в 1D пространстве нанофрагментов, $(r_n f n)^* = (n_r f n)$,
- 11) (r, f n,) 3D фрактальная структура из 1D-нанофрагментов структуры, упорядоченных в 1D пространстве, $(r_n f n_r)^* =$ $(n_r f r_p)$,
- 12) $(r_n f n_f) 3D$ фрактальная структура из 1D локальных фракталов, упорядо-

ченных в 1D пространстве нанофрагментов, $(r_n f n_f)^* = (n_r f f_n),$

13) $(r_n + r_n)^{r_n} = 3D$ фрактальный нанообъект из 1D нанообъектов и упорядоченных в 1D пространстве нанофрагментов, $(r_n f_n n)^* = (n_r n_f n),$

 $(r_n f_n n_r) - 3D$ фрактальный нанообъект из 1D-фрагментов структуры и упорядоченных в 1D пространстве нанофрагментов,

 $(r_n f_n n_r)^* = (n_r n_r r_n),$

 $(r_n f_n n_f) - 3D$ фрактальный нанообъект из 1D локальных фракталов и упорядоченных в 1D пространстве нанофрагментов, $(r_n f_n n_f)^* = (n_r f_n n_f),$

16) (r, f, n) – 3D структура из 1D детерминистических фракталов, нанообъектов и упорядоченных в 1D пространстве наноф-

рагментов, $(r_n f_r n)^* = (n_r r_f n)$,

17) $(r_n \hat{f}_r^n n_r) - 3D \hat{c}_r^r \hat{f}_r \hat{v}_r$ из 1D детерминистических фракталов, фрагментов структуры и упорядоченных в 1D пространстве нанофрагментов, $(r_n f_r n_r)^* = (n_r r_f r_n)$,

18) $(r_n f_n) - 3D$ структура из 1D детерминистических фракталов, 1D локальных фракталов и упорядоченных в 1D пространстве нанофрагментов, $(r_n f_n f_n)^* =$ $(n_r r_f f_n)$

 $(r_f f n) - 3D$ фрактальная структура из нанообъектов, упорядоченных в 1D пространстве по фрактальному закону, $(r_{x} f n)^{*} =$ (f, f n),

20) (r_f f n_g) – 3D фрактал из 1D-нанофрагментов структуры, упорядоченных в 1D пространстве по фрактально-

му закону, $(r_f f n_r)^* = (f_r f r_n),$ 21) $(r_f f n_f)^* - 3D$ фрактал из 1D локальных фракталов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f f n_f)^* = (f_r f f_n),$

22) $(r_f f_n n) - 3D$ фрактальный нанообъект из 1D нанообъектов, упорядоченных в 1D пространстве по фрактальному закону,

 $(r_f f_n n)^* = (f_r n_f n),$

 $(r_{r}, f_{r}, n) - 3D$ фрактальный нанообъект из 1D-нанофрагментов структуры, упорядоченных в 1D пространстве по фрактальному закону, $(r_{s} f_{n})^{*} = (f_{n} r_{n})$,

24) $(r_f f_n n_f) - 3D$ фрактальный нанообъект из 1D локальных фракталов, упорядоченных в 1D пространстве по фрактально-

му закону, $(r_f f_n n_f)^* = (f_r f_n n_f),$ 25) $(r_f f_r n) - 3D$ структура из 1D детерминистических фракталов и нанообъектов, упорядоченных в 1D пространстве по фрак-

тальному закону, $(r_f f_r n)^* = (f_r r_f n)$, 26) $(r_f f_r n_r) - 3D$ структура из 1D детерминистических фракталов 1D-нанофрагментов структуры, упорядоченных в 1D пространстве по фрактальному закону, $(r_f f_r n_r)^* = (f_r r_f r_n)$,

27) $(r_f f_r n_f) - 3D$ структура из 1D детерминистических фракталов и 1D локальных фракталов, упорядоченных в 1D пространстве по фрактальному закону, $(r_f, f_r, n_f)^* =$ $(f_r r_r f_s)$.

6 Класс наноразмерный кристалли**ческий** (r n n), структуры R_{mn}^{-3} (симметрия пространственных G_{3}^{3} , слоевых G_{2}^{3} , ленточ-

ных $G_{2,1}^3$):

1) $(\hat{r} \, n \, n) - 3D$ структура из упорядоченных 2D наночастиц, $(r n n)^* = (r n n)$,

2) (r n n) 3D структура упорядоченных 2D нанофрагментов структуры, $(r n n)^* =$

3) (r n n_s) – 3D структура из упорядоченных 2D локальных фракталов, (r n n_s)* $= (r n f_n),$

4) $(r n_r n_r) - 3D$ структура из упорядоченного 2D нанофрагмента структуры,

 $(r n_r n_r)^* = (r r_n r_n),$ 5) $(r n_r n_r) - 3D$ структура из упорядоченного нанообъекта из 1D-фрагмента структуры и 1D локального фрактала, $(r n_n)^* =$

6) (r n_{s} n_{s}) – 3D структура из упорядоченного 2D локального фрактала, (r n, n)* =

7) (r_n n n) – 3D структура из 2D наночастиц и упорядоченных в 1D пространстве нанофрагментов, $(r_n n n)^* = (n_n n n)$,

8) (r, n n,) – 3D структура из 1D наночастиц и 1D нанофрагментов структуры, упорядоченных в 1D пространстве, $(r_n n_p)^* =$

 $(n_r n r_n)$,

9) $(r_n n_f) - 3D$ структура из 1D наночастиц и 1D локальных фракталов, упорядоченных в 1D пространстве нанофрагментов $(r_n n n_f)^* = (n_r n f_n),$

10) $(r_n n_r^2 n_r^2)^2 - 3D$ структура из 2D нанофрагментов структуры, упорядоченных в 1D пространстве, $(r_n n_r n_r)^* = (n_r r_n r_n)$,

11) (r n n) – 3D структура из 1D нанофрагментов структуры и 1D локального фрактала, упорядоченных в 1D пространстве, $(r_n n_r n_f)^* = (n_r r_n f_n)$,

 $(r_n^r, n_f^r, n_s) - 3D^{n}$ структура из 2D ло-кальных фракталов, упорядоченных в 1D пространстве нанофрагментов $(r_n n_f n_f)^* =$

 $(\hat{n}_r f_n f_n)$. 13) $(r_f n n) - 3D$ структура из 2D наночастиц, упорядоченных в 1D пространстве по фрактальному закону, $(r_f n n)^* = (f_r n n)$,

14) $(r_{r} n n_{r}) - 3D$ структура из 1D наночастиц и 1D нанофрагментов структуры, упорядоченных в 1D пространстве по фрактальному закону $(r_f n n_r)^* = (f_r n r_n),$

15) $(r_{s} n n_{s}) - 3D$ структура из 1D наночастиц и 1D локальных фракталов, упорядоченных в 1D пространстве по фрактальному закону $(r_f n n_f)^* = (f_r n f_n),$

16) $(r_{r} n_{r} n_{r}) - 3D$ структура из 2D нанофрагментов структуры, упорядоченных в 1D пространстве по фрактальному закону

 $(r_{r_{n}} n_{r_{n}} n_{r_{n}})^* = (f_{r_{n}} r_{r_{n}} n_{r_{n}}),$

17) $(r_{r} n_{r} n_{r}) = 3D$ структура из 1D нанофрагментов структуры и 1D локального фрактала, упорядоченных в 1D пространстве по фрактальному закону $(r_{r_{1}} n_{r_{2}} n_{r_{3}})^{*} = (f_{r_{1}} r_{r_{3}} f_{r_{3}}),$

18) $(r_{f} n_{f} n_{f}) - 3D$ структура из 2D локальных фракталов, упорядоченных в 1D пространстве по фрактальному закону

 $(r_{f} n_{f} n_{f})^{*} = (f_{f} f_{n} f_{n}).$ Ранее в [8-20] представления о состояниях поверхности композитов, обусловленных кристаллическими фазами, распределенными по объему наночастицами некоторых из этих фаз, а также квазифрактальными конфигурациями межфазных границ (некоторые состояния класса (r n f)) были использованы при целенаправленном поиске и интерпретации трибологических свойств поверхности некоторых композиционных материалов и покрытий.

Список литературы

- 1. Иванов В.В. // Междунар. науч.-иссл. журнал. 2013. № 7-1. C. 26-28
- 2. Иванов В.В. // Успехи соврем. естествознания. 2014. № 4. С. 105-108.
- 3. Иванов В.В. // Соврем. наукоемкие технологии. 2013. № 5. C. 29-31.
- 4. Иванов В.В. // Успехи соврем. естествознания. 2013. № 8. C. 134-135.
- 5. Иванов В.В. // Успехи соврем. естествознания. 2013. № 8. C. 129-130.
- 6. Иванов В.В. // Междунар. науч.-иссл. журнал. 2013. № 7-1. C. 35-37.
- 7. Заморзаев А.М. Теория простой и кратной антисимметрии. Кишинев: Штиинца, 1976. 283 с.
- 8. Иванов В.В., Щербаков И.Н. Моделирование композиционных никель-фосфорных покрытий с антифрикционными свойствами. Ростов н/Д.: Изд-во журн. «Изв. вузов. Сев.-Кавк. регион», 2008. 112 с.
- 9. Химическое наноконструирование композицонных материалов и покрытий с антифрикционными свойствами / И.Н. Щербаков, В.В. Иванов, В.Т. Логинов и др. Ростов н/Д.: Изд-во журн. «Изв. вузов. Сев.-Кавк. регион. Техн. науки»,
- 10. Иванов В.В., Арзуманова А.В., Иванов А.В., Балакай В.И. // Журн. прикладной химии. 2006. Т. 79. Вып. 4.
- 11. Иванов В.В., Курнакова Н.Ю., Арзуманова А.В. и др. // Журн. прикладной химии. 2008. Т. 81. Вып. 12. С. 2059-
- 12. Иванов В.В., Арзуманова А.В., Балакай И.В., Балакай В.И. // Журн. прикладной химии. 2009. Т. 82. Вып. 5. C. 797-802.
- 13. Беспалова Ж.И., Иванов В.В., Смирницкая И.В., и др. // Журн. прикладной химии. 2010. Т. 83. Вып. 2. C. 244-248.
- 14. Беспалова Ж.И., Иванов В.В., Смирницкая И.В., и др. // Журн. прикладной химии. 2010. Т. 83. Вып. 5.

- 15. Иванов В.В., Щербаков И.Н. // Изв. вузов. Сев.-Кавк. регион. Техн. науки. 2011. № 3. С. 54-57.
- 16. Иванов В.В., Щербаков И.Н. // Изв. вузов. Сев.-Кавк. регион. Техн. науки. 2011. № 5. С. 47-50.
- 17. Дерлугян П.Д., Иванов В.В., Иванова И.В. и др. // Соврем. наукоемкие технологии. 2013. № 5. С. 21-24.
- 18. Дерлугян П.Д., Иванов В.В., Иванова И.В. и др. // Соврем. наукоемкие технологии. 2013. № 10. С. 158-160.
- 19. Дерлугян П.Д., Иванов В.В., Иванова И.В. и др. // Соврем. наукоемкие технологии. 2013. № 10. С. 161-163.
- 20. Иванов В.В. // Global Science and Innovation: materials of the I International Conference. Vol. II. Chicago, December 17-18th, 2013 / Publishing office Accent Graphics communications. Chicago USA, 2013. P. 108-110.