УДК 549.623.52:552.43+550.42

ПЕТРОГЕНЕТИЧЕСКИЕ ТИПЫ, ФЛЮИДНЫЙ РЕЖИМ И ПОТЕНЦИАЛЬНАЯ РУДОНОСНОСТЬ МЕЗОЗОЙСКИХ ГРАНИТОИДОВ БОЛЬШОГО КАВКАЗА

Гусев А.И.

Алтайская государственная академия образования им. В.М. Шукиина, Бийск, e-mail: anzerg@mail.ru

В статье приведены данные по составу биотитов мезозойских гранитоидов Большого Кавказа. Проведена типизация гранитоидов и выделены следующие петрогенетические типы: адакитовые (AD), І-тип, анорогенные (A₂), шошонитовые (SH). На основе экспериментальных данных проведены расчеты параметров флюидного режима с определением, фугитивностей, парциальных давлений O₂, H₂O, CO₂, HCl, HF, концентраций HF во флюидах. На основе оптимальных параметров флюидного режима выявлены перспективные массивы гранитоидов на различные типы оруденения: золото-черносланцевое, субвулканическое золото-серебряное.

Ключевые слова: петрогенетические типы гранитоидов, AD-, I-, A2-, SH- типы, флюидный режим, фугитивность, парциальное давление, оруденение, золото, серебро

PETROGENETIC TYPES, FLUID REGIME AND POTENCIAL ORE MINERALIZATION OF MEZOZOIC GRANITOIDS BIG CAUCASUS

Gusev A.I.

The Shukshin Altai State Academy of Education, Biisk, e-mail: anzerg@mail.ru

Data on composition of biotites Mezozoic granitoids of Big Caucasus lead in paper. Typization of granitoids conducted and follow petrogenetic types granitoids detached: adaktic (AD), I-type, anorogenic (A₂), shoshonitic (SH). Estimations of parameters fluid regime with determination of fugacities, parcial pressure O₂, H₂O, CO₂, HCl, HF carry on the basis of experimental data. Perspective massifs of granitoids discovered on the optimal parameters of fluid regime on the different type of ore mineralization: gold-blackshale, subvolcanic gold-silver.

Keywords: petrogenetic type granitoids, AD-, I-, A2-, SH-types granits, fluid regime, fugacity, parcial pressure, ore mineralization, gold, silver

Проблемы петрогенезиса, флюидного режима и потенциальной рудоносности составляют важнейшие аспекты фундаментальной проблемы связи магматизма и оруденения. Мезозойский интрузивный магматизм Большого Кавказа распространён весьма широко и с ним пространственно ассоциируют различные типы оруденения, различающиеся по составу и своей промышленной значимости. Однако значительные площади различных тектонических блоков Большого Кавказа с развитыми в них магматитами анализируемого возрастного уровня по различным причинам не сопровождаются оруденением.

Цель исследования — провести петрогенетическую типизацию мезозойских гранитоидов, изучить их флюидный режим и оценить возможную потенциальную рудоносность. Петрологическое изучение мезозойских гранитоидов Большого Кавказа проводилось комплексно с использованием геологических, петрографических, минералогических, петро-и геохимических данных. На этой основе для целей палеогеодинамических реконструкций были выделены

различные петрогенетические типы мезокайнозойских гранитоидов [3].

Результаты исследований. В истории развития складчато-глыбовой системы Большого Кавказа киммерийский этап играл существенную роль в наращивании континентальной коры в южном обрамлении эпигерцинской Скифской плиты, а также в становлении многочисленных типов оруденения (W, Mo, Pb, Zn, Cu, As, Au, U), обнаруживающими связь с гранитоидами различного генезиса [3, 4].

В последнее время получены новые данные по геологическому положению гранитоидов и их петрологии. Настоящее сообщение базируется на новых данных с акцентом на изучении химизма биотитов гранитоидов региона, как это было выполнено для кислых магматитов палеозойского этапа развития Большого Кавказа [4].

Химические составы биотитов гранитоидов (таблица) показывают некоторые различия между интрузивными комплексами, локализующимися в смежных тектонических блоках. Так биотиты даек плагиогранитов рухталдеринско-ботоорского

(Азербайджан) и диндидагского (Дагестан) комплексов отличаются максимальными количествами магния и минимальными – глинозёма. В них наблюдается значительный дефицит алюминия октаэдрической координации (от –0,20 до –0,53), чего не отмечено в слюдах гранитоидов других комплексов мезо-кайнозойского этапа. Гранитоиды характеризуемых комплексов представлены дайками габбро-плаги-

огранитовой серии [1], формировавшейся в обстановке внутриконтинентального рифта. Они распространены в троговой части изоклинально-складчатой зоны Южного склона Главного хребта, выполненной нижне-среднеюрскими углеродисто-терригенными толщами. На диагармме (рис. 1) биотиты плагиогранитов Ботоора и Диндидага попадают в поле адакитового (АD-типа) гранитов.

Средние химические составы биотитов мезозойских гранитоидов Большого Кавказа (масс. %)

Компо-	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	34,28	35,42	35,12	37,95	35,81	35,76	35,65	35,55	36,13	36,46	36,39
TiO ₂	3,48	3,31	3,40	2,11	2,89	2,93	2,96	3,08	3,17	3,2	3,22
Al_2O_3	11,08	11,03	14,23	13,82	18,7	18,82	18,65	19,11	18,55	18,21	18,11
Fe ₂ O ₃	3,18	3,24	5,21	5,25	3,81	3,75	3,77	3,96	4,06	4,27	4,2
FeO	15,41	15,55	20,52	15,84	16,75	17,05	17,24	17,15	16,1	15,96	16,12
MnO	0,56	0,54	0,71	0,61	0,30	0,2	0,21	0,33	0,45	0,41	0,37
MgO	20,19	20,33	8,09	6,95	5,15	5,18	5,33	4,95	5,28	5,25	5,31
CaO	0,48	0,41	0,40	1,02	1,2	0,8	1,05	0,42	0,97	0,95	0,93
Na ₂ O	0,31	0,27	0,20	0,41	0,3	0,3	0,31	0,31	0,25	0,3	0,29
K ₂ O	7,26	7,08	8,03	8,72	9,25	9,35	8,95	9,16	8,96	9,02	9,12
P_2O_5	0,30	0,23	0,21	0,15	0,48	0,5	0,51	0,51	0,25	0,3	0,32
H_2O^+	3,21	3,19	3,72	3,07	2,95	3,02	2,75	3,06	2,87	2,94	2,95
F	0,23	0,21	0,53	3,05	1,86	1,9	2,05	1,95	1,82	1,91	1,85
Cl	0,21	0,20	0,42	0,01	0,55	0,6	0,55	0,61	0,68	0,66	0,63
B_2O_3	0,02	0,01	0,01	0,03	0,02	0,04	0,03	0,05	0,31	0,32	0,3

Примечание. Анализы выполнены на микрозонде «Сатевах» в ОИГиГ СО РАН (г. Новосибирск), редкие щелочные элементы — методом пламенной фотометрии; п — количество анализов. Биотиты мезозойских гранитоидов: Складчатая зона Южного скона Главного хребта 1 — даек плагиогранитов (рухталдеринско-ботоорский комплекс — I_1), 2 — даек плагиогранитов (диндидагский комплекс — I_2); складчато-глыбовое поднятие Главного хребта Центрального Кавказа: 3 — дайки гранодиоритов (хнов-борчинский комплекс — I_2), 4 — гранитов биотитовых (санчаро-кардывачский комплекс — I_2); трахириодациты маринского комплекса (I_1): 5 — (Ковалёвское месторождение), 6 — р. Мара), 7 — р. Эшкакон, 8 — р. Гитчеезен); трахириодацит-порфиры хуламского комплекса (I_2): 9 — месторождение Радужное, 10 — р. Безинги, 11 — р. Кышлык-су.

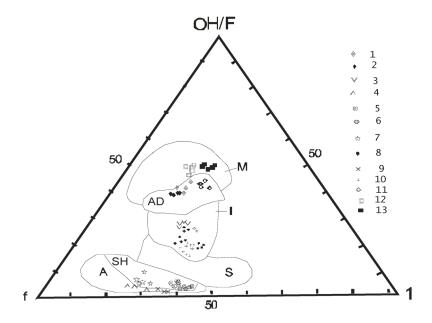


Рис. 1. Диаграмма f-l-OH/F в биотитах гранитоидов Большого Кавказа. Стандартные петрогенетические группы гранитоидов: M- мантийные COX, задуговых бассейнов (в составе офиолитовых комплексов); AD- мантийно-коровые рифтогенных и ативных континентальных окраин; I- мантийно-коровые островных дуг, трансформных и активных континентальных окраин, коллизионных обстановок; S- коровые и мантийно-коровые коллизионных обстановок; SH- шошонитовые гранитоиды постколлизионных обстановок, спровоцированных плюмтектоникой.;

A — мантийно-коровые и мантийные анорогенных обстановок (внутриконтинентальных рифтов, горячих точек, активизации кратонных стадий древних платформ); f — общая железистость биотитов (f= Fe+Mn/Fe+Mn+Mg); I — глинозёмистость биотитов (l=Al/Si+Al+Fe+Mg); OH/F — отношение гидроксильной группы к фтору в составе биотитов.

Породы гранитоидных комплексов Б. Кавказа: 1- плагиограниты рухталдеринско-ботоорского (J_i) ; 2- плагиограниты даек диндидагского (J_i) ; 3- гранодиориты даек хнов-борчинского (J_i) ; 4- граниты-санчаро-кардывачского (J_i) ; 5- трахириодациты маринского (J_i) ; 6- трахириодацит-порфиры хуламского (J_i) ; 7- трахидациты кавминводского (N_i^3) ; 8- гранодиорит-порфиры, дацит-порфиры теплинского (N_i^3) ; 9- двуполевошпатовые лейкограниты тырныдузского (массивы «Самолёт», «Паук» $-N_i^3$); 10- граниты, фельзит-порфиры эльджуртинского (N_i^3) ; 11- трондъемиты массива «Паук» (PZ_i) ; 12- плагиограниты, трондъемиты архызского (PZ_i) ; 13- плагиограниты офиолитов пластинчатого комплекса даек касаевской свиты (PZ_i)

Складчато-глыбовое поднятие Главного хребта характеризуется значительным разнообразием типов гранитоидов. Биотиты даек гранодиоритов хнов-борчинского комплекса (Дагестан, подзона Бокового хребта складчато-глыбового поднятия Главного хребта) характеризуются умеренными значениями содержаний магния и максимальными показателями суммарного железа (табл. 1). Породы этого комплекса относятся к гранитам известково-щелочной серии. Биотиты даек гранодиоритов попадают в поле І-типа (рис. 1) сильно контаминированного и редуцированного I-SCR. Высокая восстановленность этих гранитоидов обусловлена, вероятно, контаминацией углерода вмещающих пород в промежуточных очагах (С орг. в гранодиоритах варьирует от 0,5 до 1,5%). Биотиты щелочных гранитов санчаро-кардывачского комплекса показывают максимальные значения фтора и минимальные – хлора. В них отмечены небольшие количества лития и рубидия. Массивы этого комплекса распространены на ограниченной площади складчато-глыбового поднятия Главного хребта Центрального Кавказа. Они ассоциируют с арфведсонитовыми щелочными гранитами. Составы слюд биотитовых гранитов комплекса тяготеют к полю анорогенных гранитов (рис. 1) гиперсольвусного типа А₂. Это единственная группа гранитов мезо-кайнозоя Большого Кавказа, относящаяся к щелочным гранитам, тяготеющим к Главно-Кавказскому разлому.

Субвулканические интрузии трахириодацитов и трахидацитов маринского и хуламского комплексов распространены в юрских терригенно-вулканогенных депрессиях, где они входят в состав вулкано-плутонических ассоциаций. Биотиты субвулканических трахириодацитов и трахидацит-порфиров по химизму относятся к А1- типу субсольвусных гранитоидов. Они характеризуются низкими концентрациями магния и относительно повышенными содержаниями глинозёма, хлора, фтора. Слюдам субвулканических порфировых интрузий хуламского комплекса свойственен также повышенный уровень бора (табл. 1). Считается, что гранитоиды описанных комплексов складчато-глыбового поднятия Главного хребта Центрального Кавказа сформировались в обстановке активной континентальной [1], или трансформной континентальной окраины [4]. Некоторые параметры флюидного режима мезо-кайнозойских гранитоидов получены на основе изучения составов биотитов с использованием теоретических и экспериментальных данных [5]. Дайки плагиогранитов рухталдеринско-ботоорского и диндидагского комплексов кристаллизовались при высоких температурах и относительно небольшой обводнённости. В пространственной связи с дайками этих комплексов известны проявления меди, кобальта, полиметаллов, а также оруденение жильного золото-сульфидно-кварцевого типа. На участках значительного проявления даек плагиогранитов диндидагского комплекса с повышенным флюидным режимом ожидается обнаружение золото-сульфидного оруденения черносланцевого типа.

Ещё более высокие перспективы на последний тип оруденения обнаруживают участки черносланцевых разрезов с роями даек хнов-борчинского комплекса. Им свойственны высокие концентрации хлора в биотитах и фугитивности HCl. Комплексы хлора, как известно, признаны одними из главных в переносе Au в растворах. Терригенно-сланцевые разрезы, развитые в обоих бортах р. Ахтычай, представляют собой типичные углеродисто-терригенные комплексы, формировавшиеся в условиях миогеосинклинали. Концентрации Сорг. в чёрных сланцах варьируют от 0,8 до 3,5%. В этих же районах проявлены густые рои даек долеритов, диоритов, гранодиоритов хнов-борчинского комплекса, сопровождающиеся полиметаллическим жильным оруденением, шлиховыми потоками Au и контрастными аномалиями As, Sb, Pb, Zn, Au, Cu. На диаграмме F-Cl-B2O3, биотиты гранитоидов этого комплекса попадают в поле продуктивных интрузивов на золотоплатинометалльное черносланцевое оруденение (рис.2).

Биотиты гранитов санчаро-кардывачского комплекса близки по своим характеристикам гранитоидам, генерирующим золото-редкометалльное оруденение. Вероятно, низкие концентрации летучих компонентов в гранитах (особенно хлора, бора) не обеспечили высокой продуктивности массивам р.Кардывач характеризуемого комплекса. В гранитах и в их экзоконтакте отмечены лишь жильные проявления полиметаллов и малосульфидной золото-кварцевой формации, а также геохимические аномалии Cu, Au, Pb, Zn, Ag, As.

В обстановке трансформной континентальной окраины формировались многочисленные вулканогенные и вулканоплутонические комплексы (авадхарский, домбайский, хуламский, маринский, ардон-ногкаусский, дигорский), относящиеся к единому вулкано-плутоническому поясу, заложенному на коре переходного типа. Некоторые из них приурочены к сдвиговым краевым бассейнам, развивавшимся в обстановке сдвиго-раздвиговых движений.

Субвулканические трахириодациты маринского и хуламского комплексов распространены в вулкано-тектонических депрессиях, приуроченных к Транскавказскому поперечному поднятию. Субвулканические образования обоих комплексов попадают в поле субвулканического золото-серебряного оруденения (рис.2) и характеризуются повышенными отношениями фугитивностей HF/HCl, а также отношениями суммы парциальных давлений воды и углекислоты к воде. Величины последнего параметра указывают на возможность создания весьма высокого давления флюидной фазы и образования фреатических колонн. Действительно на многих участках проявления субвулканических образований трахириодацитов обнаруживаются флюидо-эксплозивные брекчии в пределах Джендаркольской ринг-структуры с тонкорассеянными сульфидами. Особенно показательны рудовмещающие тела таких брекчий на золотосеребряном Ковалёвском месторождении. В субвертикальных зонах и флюидо-эксплозивных брекчиях с прожилково-вкрапленной минерализацией (кварц, карбонат, пирит, редко арсенопирит, галенит, сфалерит, халькопирит) содержания золота варьируют от 1 до 20 г/т. Самородное золото имеет пробность от 630 до 674 %. Рудные тела сопровождаются аргиллизитами с серицитом, реже — адуляром. Кроме известных

проявлений золото-серебряного оруденения (Ковалёвское месторождение и проявление Мара), потенциальные перспективы имеются на участках Эшкакон и Гитчеезен, где трахириодациты характеризуются оптимальными параметрами флюидного режима.

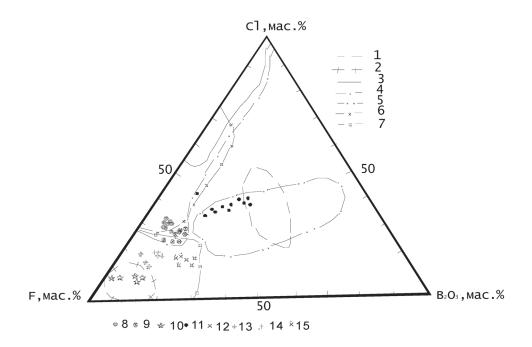


Рис. 2. Диаграмма $F-Cl-B_2O_3$ в биотитах рудогенерирующих мезо-кайнозойских гранитоидов Большого Кавказа. Поля биотитов рудогенерирующих гранитоидов: 1- золото-медно-скарновых, золото-железорудно-скарновых (латитовая серия); 2- золото-редкометалльных (скарновых и жильных); 3- золото-платинометалльных черносланцевых; 4- субвулканических золото-серебряных и жильных золото-сульфидно-кварцевых; 5- медно-золото-порфировых; 6- золото-скарновых и золото-медно-скарновых (известково-щелочная серия); 7- скарновых вольфрам-молибденовых. Биотиты гранитоидных комплексов 6- Кавказа: 8- субвулканические трахириодациты маринского; 9- субвулканические трахириодацит-порфиры хуламского; 10- трахидациты кавминводского; 11- гранодиорит-порфиры, дацит-порфиры теплинского; 12- лейкограниты тырныаузского (массивы «Самолёт», «Паук»); граниты эльджуртинского комплекса: 13- биотитовые граниты 9-льджуртинского массива (центр), 14- биотитовые граниты 9-льджуртинского массива (центр), 14- биотитовые граниты 9-льджуртинского массива (чентр), 14-

Близкие параметры флюидного режима обнаруживаются в субвулканических образованиях хуламского комплекса. Трахириодацит-порфиры последнего имеют повышенные значения параметров флюидного режима не только на известном золото-серебряном месторождении Радужном, но также и на участках Правобережном и Кышлык-су.

Интерпретация результатов и выводы. Приведенные материалы показывают, что на Большом Кавказе встречаются различные

петрогенетические типы гранитодов в мезозое: адакитовые (AD), I — тип (раннеорогенные), шошонитовые (SH) и анорогенные (A₂). Петрогенетические типы гранитоидов чаще всего образуются в строго определённых геодинамических обстановках. Это позволяет уточнить некоторые сложившиеся геотеконические условия развития Большого Кавказа. Наличие анорогенных и шошонитовых гранитоидов в мезозое указывает на влияние в их формировании глубинных сфер Земли с участием плюмтектоники [5, 6, 7].

Весьма различные параметры флюидного режима гранитоидов мезозойского этапа развития Большого Кавказа указывают на их потенциальную рудоносность. Раннесреднеюрские гранитоиды адакитового и I- типов по оптимальным параметрам флюидного режима потенциально перспективны на обнаружение золото-черносланцевого оруденения [8].

Таким образом, юрские гранитоидные комплексы Центрального Кавказа (маринский и хуламский) обнаруживают близость к шошонитовой серии и перспективны на обнаружение субвулканических золото-серебряных месторождений. По параметрам флюидного режима выявлены новые участки распространения золотогенерирующих гранитоидов, перспективных на выявление золото-серебряного оруденерия.

Список литературы

- 1. Гусев А.И. Петрогеохимические особенности магматических образований Белокано-Андийского района Восточного Кавказа // Геохимия, 1980. № 4. С.521-532.
- 2. Гусев А.И. Петрофациальные типы нижне-среднеюрских песчаников Северного Кавказа и геодинамические обстановки их формирования // Геология твёрдых полезных ископаемых Дагестана. Труды ИГ Даг.ФАН СССР, 1990. Вып. 42. С.54-64.
- 3. Гусев А.И. Типы гранитоидов Большого Кавказа и геодинамические обстановки их формирования // Бюлл. МОИП. Отд. Геология, 1991. Т.66. С.139.
- 4. Гусев А.И. Кузубов П.П. Петрогенетические типы и флюидный режим палеозойских гранитоидов Большого Кавказа // Отечественная геология, 2001. № 2. C.42-48.
- 5. Гусев А.И., Гусев Н.И. Магмо-флюидо-динамическая концепция эндогенного рудообразования на примере Алтая и других регионов // Региональная геология и металлогения, 2005. № 23. С. 119-129.
- 6. Гусев А.И., Гусев А.А. Шошонитовые гранитиды: петрология, геохимия, флюидный режим и оруденение. М.: Изд-во РАЕ, 2011. 128 с.
- 7. Гусев А.И. Постколлизионные гранитоиды: петрология, геохимия, флюидный режим и оруденение. Gamburgh: Palmarium Academic Publishing, 2012. 217 с.
- 8. Гусев А.И. Петрология золотогенерирующего магматизма. М.: Изд-во РАЕ, 2012. 160 с.