УДК 612.014.426+612.397

АКТИВНОСТЬ ЭНДОГЕННОЙ СИСТЕМЫ АНТИОКСИДАНТНОЙ ЗАЩИТЫ В ПРОЦЕССЕ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

Луцкий М.А., Куксова Т.В., Смелянец М.А., Лушникова Ю.П.

ГБОУ ВПО Воронежская государственная медицинская академия, Воронеж, e-mail: Lustky@mail.ru

В организме постоянно присутствуют условия для реализации свободнорадикального окисления (СРО), обусловленные наличием субстратов, а также инициаторов и катализаторов. В норме содержание первичных, вторичных и конечных продуктов свободнорадикального окисления невелико, что достигается существованием в организме постоянно функционирующего комплекса биологических механизмов эндогенной системы антиоксидантной защиты (АОЗ). Эндогенная система антиоксидантной защиты организма лимитирует процесс свободнорадикального окисления липидов и белков на всех его этапах, и таким образом поддерживает эти реакции на относительно постоянном уровне. Такая регламентация реакции свободнорадикального окисления обеспечивается согласованным функционированием ферементативных и неферментативных звеньев эндогенной системы антиоксидантной защиты.

Ключевые слова: эндогенная система антиоксидантной защиты

ANTIOXIDANT DEFENSE SYSTEM ACTIVITY IN LIFE PROCESSES OF THE ORGANISM

Lutsky M.A., Kuksova T.V., Smelyanets M.A., Lushnikova Y.P.

Voronezh State Medical Academy named after N.N. Burdenko, Voronezh, e-mail: Lustky@mail.ru

Any cell in the organism possesses constant conditions for free-radical oxidation (FRO) processes resulting from the presence of substrates, initiators, and catalysts. The content of primary, secondary, and end free-radical oxidation products in norm is not high, which is achieved through a continuous complex of biological mechanisms of the antioxidant defense system (ADS). The endogenous antioxidant defense system restricts the lipid and protein free-radical oxidation process at all stages, thus maintaining the reactions at a relatively constant level. Such regulation of the free-radical oxidation reaction is available through coherent functioning of enzymatic and nonenzymatic components of the endogenous antioxidant defense system.

Keywords: endogenous antioxidant defense system

В любой клетке организма постоянно имеются условия для протекания процессов свободнорадикального окисления, обусловленные наличием субстратов: (жирнокислые остатки липидов, СООН- группы белков и аминокислот), а также инициаторов и катализаторов: (активные формы кислорода и ионы металлов переменной валентности) [1,4]. В то же самое время в норме содержание продуктов свободнорадикального окисления невысоко, что достигается существованием постоянно функционирующего в организме комплекса биологических механизмов эндогенной системы антиоксидантной защиты (АОЗ) [2]. Эндогенная система антиоксидантной защиты ограничивает процесс свободнорадикального окисления липидов и белков практически во всех его звеньях и поддерживает эти реакции на относительно постоянном уровне. Строгая регламентация реакций свободнорадикального окисления обеспечивается согласованным функционированием ферментативных и неферментативных звеньев эндогенной системы антиоксидантной защиты, контролирующей уровень в организме активных форм кислорода (супероксидный анион-радикал, гидроксильный радикал, синглетный кислород), свободных радикалов и молекулярных продуктов СРО липидов и белков. Функционирующие в каждой клетке, органах, тканях и в организме в целом ферментативные и неферментативные звенья эндогенной системы антиоксидантной защиты играют исключительную роль в поддержании гомеостаза при взаимодействии организма с изменяющимися условиями внешней и внутренней среды для обеспечении его жизнедеятельности [3].

Активность ферментативного звена эндогенной системы антиоксидантной защиты

Главную роль в ферментативном звене эндогенной системы антиоксидантной защиты играет супероксиддисмутаза. Наиболее важным высокоактивным метаболитом реакции дисмутации супероксидных радикалов супероксиддисмутазой является перекись водорода. Образующаяся в достаточно высоких количествах в результате биохимических реакций, протекающих в митохондриях, эндоплазматическом ретикулуме, пероксисомах и цитозоле клеток.

Супероксиддисмутаза катализирует реакцию дисмутации супероксидного анион-радикала с образованием перекиси во-

дорода. В связи с тем, чем концентрация перекиси водорода становиться высокой, она способна оказывать токсическое действие на клетку как сильный окислитель. В этой ситуации проявляют свою активность и субстратиндуцируемые ферменты: (каталаза и пероксидаза), нейтрализующие перекись до воды и кислорода, которые метаболизируются клетками.

В результате жизнедеятельности организма образуется около 65% общего количества перекиси водорода, которую рассматривают необходимый метаболит, участвующий в реализации различных физиологических функций организма. Наряду с этим, перекись водорода как сильный окислитель способна оказывать и токсическое действие на клетку. Поэтому очень большое значение имеет поддержание нормального уровня перекиси водорода и предотвращение ее накопления в организме. Основную роль в этом играют ферменты, в первую очередь каталаза и пероксидаза, которые избирательно катализируют разрушение молекул перекиси водорода.

Каталаза – гематиносодержащий фермент, разрушающий перекись водорода без участия акцепторов кислорода, а донором электронов служит сама перекись водорода. Молекула каталазы состоит из четырех одинаковых субъединиц. Фермент находится, в основном, в цитоплазме клеток, пероксисомах, митохондриях и эндоплазматическом ретикулуме, то есть, именно там, где вырабатывается наибольшее количество перекиси водорода. Каталаза присутствует практически во всех тканях организма, но наибольшая активность обнаружена в эритроцитах, печени и почках. Каталазу относят к ферментам, которые наиболее длительно сохраняют высокую активность, почти не требуют энергии активации, а скорость реакции разложения перекиси водорода, лимитируется лишь скоростью диффузии субстрата к активному центру каталазы. Особенностью каталазы, принципиально отличающей ее от других ферментов, является выполнение ею двойной функции - каталазной и пероксидазной. При высоких концентрациях перекиси водорода в клетке преобладает каталазная активность, а при низких концентрациях -пероксидазная. Специфичность каталазы, выполняющей пероксидазную функцию, также велика. Ее субстратами являются перекись водорода, метил- и этилгидроперекиси. Донорами водорода для нее могут также быть алифатические спирты: (метанол, этанол, бутанол). Количественное соотношение каталазы и перекиси водорода в клетке обуславливает возможность реализации либо каталазной, либо пероксидазной функции этого фермента. При низких концентрациях перекиси водорода, помимо каталазы, она разлагается группой ферментов-пероксидаз, которые отличаются другот друга субстратами, используемыми в качестве доноров водорода.

Пероксидаза, в отличие от каталазы, содержит всего одну гемовую группу на одну молекулу фермента. Так же, как и каталаза, пероксидаза восстанавливает перекись водорода до воды, используя в качестве доноров водорода фенолы, амины, органические кислоты. В тканях организма пероксидаза распространена не так широко, как каталаза. Наибольшая активность пероксидаз выявлена в тонкой и толстой кишке, селезенке и легких. Пероксидазная активность крови обусловлена, в основном, ее наличием в гранулоцитах. Наряду с этим пероксидазной активностью обладает гемоглобин и его комплекс с гаптоглобином. В то же время пероксидазы, в частности, миелопероксидаза, адсорбируясь на мембранах фагоцитированных бактерий, генерируют альдегиды, синглетный кислород и другие свободные радикалы, которые повреждают клетки. Пероксидаза может окислять полиненасыщенные жирные кислоты с образованием гидроперекисей и малонового диальдегида. Супероксиддисмутаза, каталаза, и пероксидаза – субстратиндуцируемые ферменты.

Центральное место в ферментативном звене системы АОЗ организма, обеспечивающим защиту от повреждающего действия перекисей различной природы, занимает глутатионпероксидаза (ГП), которая является одним из компонентов антиперекисного комплекса, включающего глутатион и глутатионредуктазу. Последняя осуществляет восстановление окисленного глутатиона, образующегося в процессе функционирования глутатионзависимой антиперекисной системы.

Глутатионпероксидаза — фермент, катализирующий превращение перекиси водорода и органических гидроперекисей до гидросоединений, которые в дальнейшем могут метаболизироваться клеточными системами. В целом антиоксидантный эффект ГП-1 и ГП-2 в цепи свободнорадикального окисления липидов и белков, инициируемый активными формами кислорода, заключается в следующем. Селенсодержащая ГП-1 предотвращает продолжение процесса

СРО, во-первых, обезвреживая уже образовавшиеся гидроперекиси жирных кислот, во-вторых, предупреждает их образование, расщепляя перекись водорода, которая реагируя с супероксидным анион-радикалом, генерирует радикал гидроксила, чрезвычайно активно окисляющий органические молекулы всех типов. Кроме ГПО-1, образование иона гидроксила предупреждают также каталаза и пероксидаза, восстанавливающие перекиси водорода.

Эффективность глутатионпероксидазного механизма восстановления гидроперекисей в значительной степени зависит от уровня основного донора водорода для осуществления этой реакции – глутатиона. Поддержание достаточного уровня восстановленной формы глутатиона, окисляющегося при функционировании глутатионзависимых антиперекисных систем, осуществляется специальным ферментом – глутатионредуктазой. Функционирование различных глутатионпероксидаз и глутатион-S-трансфераз в организме теснейшим образом связано с глутатионом, которому принадлежит важнейшая роль в эндогенной системе антиоксидантной защиты организма.

Глутатионредуктазу относят ментативному звену эндогенной системы антиоксидантной защиты. Субстратом для работы глутатионредуктазы является окисленный глутатион, который она переводит в восстановленный. Активность фермента возрастает при увеличении концентрации восстановленных форм перидинуклеотидов и окисленного глутатиона. Таким образом, глутатионредуктаза - глутатионпероксидаза формируют замкнутый антиперекисный комплекс, в котором пероксидаза нейтрализует перекиси до водорода и воды, при этом глутатион окисляется, а глутатионредуктаза восстанавливает окисленный глутатион, превращая его в субстрат для деятельности глутатионпероксидазы.

Активность неферментативного звена эндогенной системы антиоксидантной защиты

Помимо ферментативного звена, ограничивающего процесс свободнорадикального окисления липидов и белков на разных его стадиях, эндогенная система антиоксидантной защиты организма включает в себя неферментативное звено, играющее не менее важную роль и состоящее из низкомолекулярных эндогенных антиоксидантов, которое включает в себя соединения с различными механизмами действия.

Глутатион – серосодержащий трипептид, образованный аминокислотами (цистеин, глутаминовая кислотоа и глицин), имеет почти универсальное распространение в тканях животных, растений и микроорганизмов. Глутатион присутствует в организме в восстановленной и окисленной формах, он представляет собой основной клеточный фонд мобильных сульфгидрильных групп. Окисленная форма глутатиона – глутатиондисульфид составляет всего 1-5% общего его количества. Глутатион участвует в транспорте аминокислот, обмене дисульфидов и поддержании сульфгидрильных групп белков в восстановленном состоянии. Как тиоловое соединение глутатион может принимать участие в реакциях с гидроперекисями без участия каких-либо ферментов или катализаторов. Он может ингибировать свободнорадикальное окисление на уровне инициирования цепного процесса, способен реагировать со свободными радикалами так же активно, как токоферол.

Антиоксидантными свойствами обладают и соединения, содержащие сульфгидрильные группы, относящиеся к звену эндогенной системы антиоксидантной защиты. Это общие, белковые и небелковые тиолы — SH-группировки, которые взаимодействуют с активными формами кислорода и перекисными радикалами, восстанавливая последние до нетоксичных продуктов.

Альфа-Токоферол (витамин Е) являясь одним из основных эндогенных жирорастворимых антиоксидантов, осуществлять антиоксидантную функцию он может осуществлять тремя основными способами: создавая компактную мембранную архитектуру, предотвращающую атаку активных форм кислорода на ненасыщенные жирнокислотные остатки мембранных фосфолипидов; локально разрушая образующиеся липидные перекисные радикалы; разрушая кислородные радикалы на полярных участках биомембран, где функционируют белки электроно-транспортной цепи. Витамин Е -эффективный «тушителель» синглетного кислорода, акцептор анион-радикала кислорода и «перехватчик» свободных радикалов, непосредственно реагирует с ними на стадии обрыва цепи. Антиоксидантную активность витамина Е связывают с его взаимодействием, главным образом, с перекисными соединениями органической природы. Образующиеся фенольные радикалы токоферола стабильны и не вступают в реакцию с ненасыщенными жирными кислотами. Поэтому они не участвуют в продолжении цепных реакций свободнорадикального окисления липидов и белков, но в то же время могут вызвать обрыв цепи при взаимодействии с перекисными радикалами жирных кислот. Активно реагировать с перекисными радикалами может только восстановленная форма витамина Е, имеющая свободную гидроксильную группу. Окисленная форма практически не реагирует с перекисными радикалами. Переход витамина Е из одной формы в другую со значительной потерей антирадикальной активности рассматривают как своеобразный способ регуляции интенсивности процессов СРО липидов и белков. Таким образом, в организме существует целый ряд взаимосвязанных антиоксидантных механизмов, основное назначение которых - поддержание реакций свободнорадикального окисления липидов и белков на стационарном физиологическом уровне. На каждом этапе течения свободнорадикального окисления липидов и белков действует свой специализированный механизм, осуществляющий эти функции, часть его строго специфична, как, например, супероксиддисмутаза, другая, (глутатионредуктаза, токоферол), характеризуется большей широтой действия и меньшей субстратной специфичностью.

Гармоничное взаимодействие ферментативного и неферментативного звеньев эндогенной системы АОЗ между со-

бой обеспечивает стабильную реализацию свободнорадикальных цепных реакций и поддержание на стационарном уровне концентраций активных форм кислорода, свободных радикалов и молекулярных продуктов свободнорадикального окисления липидов и белков.

Таким образом, вышеперечисленные маркеры ферментативного и неферментативного звеньев эндогенной системы антиоксидантной защиты обеспечивают защитную функцию организма тем самым, обеспечивают защиту его жизнедеятельности [5].

Список литературы

- 1. Луцкий М.А. и др. Процессы свободнорадикального окисления липидов и белков в норме и патологии. Материалы XX межрегиональной научно-практической конференции неврологов. «Состояние здоровья населения Центрального Федерального округа». 2007. С. 430–435.
- 2. Луцкий М.А. и др. Функционирование эндогенной системы антиоксидантной защиты организма. Журнал теоретической и практической медицины. 2008. Т. 6, № 4. С. 408–415.
- 3. Луцкий М.А. и др. Эндогенная система антиоксидантной защиты организма. Материалы Воронежской областной научно-практической конференции неврологов «Актуальные проблемы неврологии». Воронеж, 2009. С. 35–46.
- 4. Луцкий М.А. и др. Свободнорадикальное окисление липидов и белков универсальный процесс жизнедеятельности организма. Журнал теоретической и практической медицины. 2009. Т. 7, № 1. С. 32–37.
- 5. Луцкий М.А. и др. Активность эндогенной системы антиоксидантной защиты организма. Системный анализ и управление в биомедицинских системах. Журнал практической и теоретической биологии и медицины. 2010. T.9, N 2. C. 281–284.