78

УДК 548.1

ПОЛУЧЕНИЕ ВЕРОЯТНЫХ МОДУЛЯРНЫХ ЯЧЕЕК ИЗ ПОЛУПРАВИЛЬНЫХ ПОЛИТОПОВ 4D ПРОСТРАНСТВА С ОДНОЙ ВНУТРЕННЕЙ ВЕРШИНОЙ ИХ СИММЕТРИЧНЫХ ПРОЕКТИВНЫХ 3D ИЗОБРАЖЕНИЙ

Иванов В.В., Таланов В.М.

Лаборатория дизайна новых материалов Южно-Российского государственного технического университет, e-mail: valtalanov@mail.ru, valivanov11@mail.ru

Обсуждаются алгоритм получения вероятных фрагментов модулярных ячеек из некоторых клеточных комплексов 4D-пространства с одной внутренней вершиной их проективных 3D-изображений и результаты описания ближнего порядка атомов в кристаллах и возможной гиперкоординации атомов углерода в некоторых классах органических соединений.

Ключевые слова: модулярная ячейка, полуправильный политоп, клеточный комплекс, координационный полиэдр, гиперкоординированный углерод

RECEIPT OF PROBABLE MODULAR CELLS FROM SEMI-REGULAR POLYTOPES OF 4D SPACE WITH ONE INTERED VERTEX OF ITS SYMMETRIC PROJECTIVE 3D IMAGES

Ivanov V.V., Talanov V.M.

Laboratory of novel materials design, South-Russian state Engineering University, e-mail: valtalanov@mail.ru, valivanov11@mail.ru

Receipt of probable fragments of modular cells from some cellular complexes of the 4D-space with one inter vertex of its symmetric projective 3D-images, the description of nearing order atoms in crystals and possible hyper co-ordination carbon atoms in some organic compounds classes were discussed.

Keywords: modular cell, semi-regular polytope, cellular complex, coordination polyhedron, hyper coordinated carbon atom

Некоторые классы соединений углерода, в частности карбораны и металлокарбораны, интересны тем, что их представители проявляют высокую термическую устойчивость, несмотря на высокие значения координационных чисел скелетных атомов углерода (5 и выше) [1, 2]. Молекулярные скелеты карборанов в клозо-формах состава СВ_{n-1}Н_{n+1} или С₂В_{n-2}Н_n образованы атомами углерода и бора и имеют характерные формы дельтаэдров – полиэдров только с треугольными гранями. Металлокарбораны можно рассматривать как производные от соответствующих карборанов, полученные путем замещения одной или нескольких групп ВН и/или СН на металлсодержащие фрагменты, в частности такие как $[(h^5 - C_5H_5)Fe]^-$, $(h^5 - C_5H_5)Co]$, $[(h^5 - C_5H_5)Ni]^+$ или $[Mn(CO)_3]^-$, $Fe(CO)_3$, $[Co(CO)_3]^+$ и другие, где h^5 – дентантность циклопентадиена (Ср) [1]. Атомы углерода, занимая одну из вершин скелетного полиэдра, характеризуются координационным числом, равным (1 + k), где k – связность данной вершины в полиэдре. Таким образом, число ближайших соседей углерода обусловлено наличием одного атома водорода из группы СН и суммарным количеством скелетных атомов С и В. С точки зрения наличия гиперкоординированного атома углерода заслуживают также внимания и клозоструктуры карбораноподобных смешанных металлоуглеродных кластеров и карбидокарбонильных кластеров металлов [1]. В связи с этим идентификация структурных ячеек-модулей, разработка новых способов вывода модулярных структур [3, 4] являются значимыми для кристаллохимии неорганических веществ [5–13] и стереохимии органических соединений [1, 2, 14].

Алгоритм получения модулярных ячеек, в том числе и ячеек с вероятными структурными фрагментами, описывающими нестандартный ближний порядок в кристаллах, заключается в последовательном выполнении в соответсвии с [15] целенаправленных топологических преобразований вполне определенных и наиболее симметричных проекций гиперячеек на 3D-пространство. Алгоритм основан на гипотезе о возможном проявлении топологических свойств определенных локальных структурных фрагментов 4D-пространства на геометрико-топологические характеристики их некоторых проективных 3D-образов.

Проанализируем варианты геометрической реализации полуправильных политопов 4D-пространства с одной внутренней

вершиной их симметричных проективных 3D-изображений [16]. При описании топологических преобразований гиперячеек использовали следующий вид символьного представления симплекса и его возможных топологических производных: HPh – <N_v, N_e, N_p, N_{ph} > {N_{ph} ph_i}. Данное представление гиперполиэдра содержат информацию о его наименовании (HPh), количестве вершин (v), ребер (е), граней (f), а также количестве и типе ячеек-полиэдров (ph).

Соответствующие топологические преобразования (сплиттинг-преобразования вершин и стелейшн-дизайн граней [15]) симметричных геометрических 3D образов политопов следующие:

- 1) для куба $S_c < 9, 20, 18, 7 > \{C, Tpyr^6\}$ и октаэдра $S_o < 7, 18, 20, 9 > \{O, T^8\}$: куб $C_c \rightarrow$ усеченный куб $tC_c \rightarrow$ кубооктаэдр $CO_c \rightarrow$ усеченный октаэдр $tO_c \rightarrow$ октаэдр O_c ,
- 2) для додекаэдра $S_D < 21$, 50, 42, 13> {D, Ppyr¹²} и икосаэдра $S_I < 13$, 42, 50, 21> {I,T²⁰}: пентагондодекаэдр $D_c \rightarrow$ усеченный пентагондодекаэдр $tD_c \rightarrow$ икосаэдр $ID_c \rightarrow$ усеченный икосаэдр $II_c \rightarrow$ икосаэдр I_c ,
- 3) для тригонпризмы S_{тр} <7, 15, 14, 6> {Tp, Tpyr³, T²}: тригональная призма Tp_c → усеченная тригональная призма tTp_c → тригональнопризматическая бипирамида TpbiPyr_c → усеченная тригональная бипирамида tTbiPyr_c → тригональная бипирамида TbiPyr_c,
- 4) для пентагонпризмы $S_{Pp} < 11, 25, 22, 8 > \{Pp, Tpyr^5, Ppyr^2\}$: пентагональная призма $Pp_c \rightarrow$ усеченная пентагональная призма $tPp_c \rightarrow$ пентагональнопризматическая бипирамида $PpbiPyr_c \rightarrow$ усеченная пентагональная бипирамида $tPbiPyr_c \rightarrow$ пентагональная бипирамида $PbiPyr_c$.
- 5) для гексагонпризмы S_{Hp} <13, 30, 26, 9> {Hp, Tpyr⁶, Hpyr²}: гексагональная призма Hp_c → усеченная гексагональная призма tHp_c → гексагональнопризматическая бипирамида HpbiPyr_c → усеченная гексагональная бипирамида tHbiPyr_c → гексагональная бипирамида HbiPyr_c.

Основные результаты анализа вероятных ячеек-модулей, которые могут быть получены из простейших полуправильных политопов гиперпространства с помощью данных топологических преобразований, приведены в табл. 1.

Для каждого клеточного комплекса представлены описания возможных форм оболочек симметричных ячеек-модулей, их символьные обозначения, симметрия модулей с учетом центральных элементов и качественный состав. Необходимо отметить, что все приведенные в табл. 1 атомные конфигурации являются известными в кристаллохимии неорганических кристаллов [17].

Среди ячеек-модулей имеются дельтаэдрические ячейки (табл. 2). Они представлены в основном п-гонбипирамидальными полиэдрами (где n = 3 - 6). Оболочки дельтаэдров могут быть каркасами молекул и молекулярных комплексов различных органических и металлорганических соединений [1, 2]. Поэтому от позиционирования каркасного атома углерода в составе группы СН существенно зависит его координация (см. табл. 2).

Показана формальная возможность одновременной реализации двух разных гиперкоординаций углерода, в частности, для дельтаэдрического комплекса $(C + O)_c$. Качественно это результат не противоречит известным экспериментально установленным данным, в частности для клозо-карборана 1,6–C₂B₈H₁₀ и металлакарборана C₂B₇H₉CoCp (дельтаэдры в форме двухша-почной квадратной антипризмы, (1 + k) = 5 и 6) [1, 2, 14].

Некоторые центрированные полиэдры также могут содержать гиперкоординированный атом углерода, занимающий центральную позицию. В частности, это реализуется в карбидокарбонильных металлических кластерах: $Ru_6(CO)_{17}C$, $Fe_5M(CO)_{16}C$ (M–Ni, Pd, Pt) и $Fe_4M_2(CO)_{14}C$ (M–Mo, Ni) в виде центрированного октаэдра O_e , $[M_6(CO)_{15}C]^{2-}$ (M–Co, Rh) [1].

Таблица 1

	Описание яч	неек-модулей,	которые мог	ут быть по	лучены
ИЗ	простейших	полуправильн	ных политопо	в гиперпр	остранства

Клеточный ком- плекс (указана форма оболочки)	Форма оболочки геометрического образа ячейки-модуля, ее симметрия и состав		
Кубический $S_c <9, 20, 18, 7>$ {C, Tpyr ⁶ } Октаэдрический $S_o <7, 18, 20, 9>$ {O,T ⁸ }	куб С _c - <8 + 1, 12, 6> (O_h) (AX ₈) усеченный куб tС _c - <24 + 1, 36, 14> (O_h) (AX ₂₄) кубооктаэдр CO _c - <12 + 1, 24, 14> (O_h) (AX ₁₂) усеченный октаэдр tO _c - <24 + 1, 36, 14> (O_h) (AX ₂₄) октаэдр O _c - <6 + 1, 12, 8> (O_h) (AX ₆) куб + октаэдр (C + O) _c - <8 + 6 + 1, 12 + 12, 14> (O_h) (AX ₈ Y ₆)		
eq:sphere:sph	пентагондодекаэдр $D_c - \langle 20 + 1, 30, 12 \rangle (I_h) (AX_{20})$ усеченный пентагондодекаэдр $tD_c - \langle 60 + 1, 90, 32 \rangle (I_h) (AX_{60})$ икосододекаэдр $ID_c - \langle 12 + 1, 30, 20 \rangle (I_h) (AX_{30})$ усеченный икосаэдр $tI_c - \langle 60 + 1, 90, 32 \rangle (I_h) (AX_{60})$ икосаэдр $I_c - \langle 12 + 1, 30, 20 \rangle (I_h) (AX_{12})$ икосаэдр + пентагондодекаэдр $(I + D)_c - \langle 12 + 20 + 1, 30 + 30, 20 + 12 \rangle (I_h) (AX_{12}Y_{20})$		
Тригонпризмати- ческий S _{тр} <7, 15, 14, 6> {Tp,Tpyr ³ ,T ² }	тригональная призма $\text{Tp}_{c} - \langle 6 + 1, 9, 5 \rangle (D_{3h})$ (AX ₆) усеченная тригональная призма $\text{TP}_{c} - \langle 18 + 1, 27, 11 \rangle (D_{3h})$ (AX ₁₈) тригональнопризматическая бипирамида TpbiPyr _c - $\langle 9 + 1, 18, 11 \rangle (D_{3h})$ (AX ₉) усеченная тригонбипирамида tTbiPyr _c - $\langle 18 + 1, 24, 11 \rangle (D_{3h})$ (AX ₁₈) тригонбипирамида TbiPyr _c - $\langle 5 + 1, 9, 6 \rangle (D_{3h})$ (AX ₅) тригонбипирамида + тригонпризма (TbiPyr + Tp) _c - $\langle 6 + 5 + 1, 9 + 9, 5 + 6 \rangle (D_{3h})$ (AX ₆ Y ₃ Z ₂)		
Пентагонпризма- тический S _{pp} <13, 30, 26, 9> {Pp, Tpyr ⁵ , Ppyr ² }	пентагональная призма $Pp_c - <10 + 1, 15, 7>(D_{5h})$ (AX ₁₀) усеченная пентагонпризма $tPp_c - <30 + 1, 45, 17>(D_{5h})$ (AX ₃₀) пентагональнопризматическая бипирамида PpbiPyr _c $- <15 + 1, 30, 17>(D_{5h})$ (AX ₁₅) усеченная пентагонбипирамида tPbiPyr _c $- <30 + 1, 45, 17>(D_{5h})$ (AX ₁₈ Y ₁₂) пентагонбипирамида PbiPyr _c $- <7 + 1, 15, 10>(D_{5h})$ (AX ₅ Y ₂) пентагонбипирамида + пентагонпризма (PbiPyr + Pp) _c $- <7 + 10 + 1, 15 + 15, 10 + 7>(D_{5h})$ (AX ₁₀ Y ₅ Z ₂)		
Гексагонпризмати- ческий S _{Hp} <13, 30, 26, 9> {Hp, Tpyr ⁶ , Hpyr ² }	гексагональная призма Hp _c – <12 + 1, 18, 8> ($D_{\delta h}$) (AX ₁₂) усеченная гексагонпризма tHp _c – <36 + 1, 54, 20> ($D_{\delta h}$) (AX ₃₆) гексагональнопризматическая бипирамида HpbiPyr _c – <18 + 1, 36, 20> ($D_{\delta h}$) (AX ₁₈) усеч. гексагонбипирамида tHbiPyr _c – <36 + 1, 54, 20> ($D_{\delta h}$) (AX ₂₄ Y ₁₂) гексагонбипирамида HbiPyr _c – <8 + 1, 18, 12> ($D_{\delta h}$) (AX ₆ Y ₂) гексагонбипирамида + гексагонпризма (HbiPyr + Hp) _c – <8 + 12 + 1, 18 + 18, 12 + 8> ($D_{\delta h}$) (AX ₁₂ Y ₆ Z ₂)		

Таблица 2

Дельтаэдрические ячейки-модули, полученные из некоторых клеточных комплексов 4D пространства

Число вершин дельтаэдра	Состав и символьное обо- значение дельтаэдра	Гиперкомплексы, инициирующие дельтаэдры	Возможное координационное число каркасного атома углерода, (1 + <i>k</i>)
4	$AX_4(T_c), AX_3Y(T_{fc})$	S _T	4, 5
5	A_0X_5 (TbiPyr), AX_5 (TbiPyr _c)	S _T , S _{Tp}	5
6	$AX_{6}(O_{c})$	S _T , S _C , S _O	5
7	AX ₅ Y ₂ (PbiPyr _c)	S _{Pp} ,	5, 6
8	$AX_{6}Y_{2}$ (Tap _{bc}), $AX_{4}Y_{4}$ (diT _c)	$S_{T}, S_{Hp},$	5, 6
12	AX_{12} (I _c),	S _D , S _I ,	5, 6
14	$AX_{8}Y_{6}(C+O)_{c}$	$\mathbf{S}_{\mathrm{T}}, \mathbf{S}_{\mathrm{C}}, \mathbf{S}_{\mathrm{O}},$	5, 7

 Π римечание. S
_ – симплекс 4 D-пространства.

Отметим, что центрированные полиэдры присутствуют также и в сандвичевых металлических комплексах циклических систем $C_n H_n$, однако в этом случае центральная позиция не дельтаэдрического полиэдра занята металлическим атомом. В качестве примеров можно привести следующие комплексы: $(h^5 - C_5 H_5)_2$ Fe в виде центрированной пентагональной антипризмы Pap_c, $(h^6 - C_6 H_6)_2$ Cr в виде центрированной гексагональной антипризмы Hap_c и $(h^8 - C_8 H_8)_2$ U в виде центрированной октагональной антипризмы Oap₂ [1].

Таким образом, описанный в работе алгоритм вывода ячеек-модулей из некоторых политопов 4D пространства формально позволяет получить определенные локальные структуры – каркасные конфигурации атомов органических и металлорганических соединений, содержащих не тетракоординированный атом углерода.

Список литературы

1. Ола Дж., Пракаш Г.К.С., Уильямс Р.Е., Филд Л.Д., Уэйд К. Химия гиперкоординированного углерода. – М.: Мир, 1990. – 336 с.

2. Минкин В.И., Миняев Р.М., Хоффманн Р. Неклассические структуры органических соединений: нестандартная кристаллохимия и гиперкоординация // Успехи химии. –2002. – Т.71. – № 11. – С. 989–1011.

3. Иванов В.В., Таланов В.М. Разбиение и структурирование пространства, описание процесса формирования модульного кристалла // Успехи современного естествознания. – 2012. – № 8. – С. 75–77.

4. Иванов В.В., Таланов В.М. Формирование структурного модуля для модулярного дизайна в 3D пространстве // Успехи современного естествознания. – 2012. – № 9. – С. 74–77. 5. Иванов В.В., Таланов В.М. Принцип модулярного строения кристаллов // Кристаллография. – 2010. – Т.55, № 3. – С. 385–398.

6. Иванов В.В., Таланов В.М. Алгоритм выбора структурного модуля и модулярный дизайн кристаллов // Журнал неорганической химии. – 2010. – Т. 55, № 6. – С. 980–990.

7. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. – Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. – 204 с.

8. Иванов В.В., Таланов В.М. Комбинаторный модулярный дизайн шпинелеподобных фаз // Физика и химия стекла, 2008. Т.34. № 4. С.528-567.

9. Иванов В.В., Таланов В.М. Структурно-комбинаторное моделирование упорядоченных шпинелоидов // Журнал структурной химии. – 1992. – Т. 33. – № 3. – С. 137–140.

10. Иванов В.В., Таланов В.М. Моделирование структур упорядоченных (типа 2:1) твердых растворов, включающих фрагмент структуры шпинели // Журнал структурной химии. – 1992. – Т. 33. – № 5. – С. 96–102.

11. Ivanov V.V., Talanov V.M. Modeling of the structure of the ordered spinel-like phases (of type 2:1). Phys. Stat. Sol.(a). 1990. – Vol. 122. – $N \simeq 2$. – P. K109–112.

12. Иванов В.В., Таланов В.М. Структурно-комбинаторное моделирование упорядоченных (типа 2:1) твердых растворов АВВ'О4 со структурами, включающими фрагмент структуры шпинели // Известия АН СССР. Неорганические материалы. – 1992. – Т. 28. – № 8. – С. 1720–1725.

Иванов В.В. Моделирование гомологических рядов соединений, включающих фрагменты структуры шпинели // Известия вузов. Сев.-Кавк. регион. Естественные науки. – 1996. – № 1. – С. 67–73.

14. Грибанова Т.Н., Миняев Р.М., Минкин В.И. Неклассические системы с двумя гиперкоординированными атомами в полиэдрическом каркасе // Доклады Академии наук. – 2008. – Т. 418. – № 2. – С. 198–202.

15. Блатов В.А. Методы топологического анализа атомных сеток // Журнал структурной химии. – 2009. – Т.50. – С. 166–173.

16. Стюарт Я. Концепции современной математики. – Минск: Выш. школа, 1980. – 384 с.

17. Урусов В.С. Теоретическая кристаллохимия. – М.: МГУ, 1987. – 276 с.