PHYSICAL AND MATHEMATICAL SCIENCES

ВЫВОД ВЕРОЯТНЫХ МОДУЛЯРНЫХ ЯЧЕЕК СТРУКТУР КРИСТАЛЛОВ ИЗ ГИПЕРКУБА 4D ПРОСТРАНСТВА

Иванов В.В., Таланов В.М.

Лаборатория дизайна новых материалов Южно-Российского государственного технического университет, e-mail: valtalanov@mail.ru, valivanov11@mail.ru

Обсуждается алгоритм получения вероятных фрагментов модулярных ячеек из гиперкуба 4D-пространства. Проанализированы вероятные описания оболочек ячеек-модулей, полученные из симметричной проекции гиперкуба, описания ближнего порядка атомов в кристаллах и гиперкоординации атомов углерода в некоторых классах органических соединений.

Ключевые слова: модулярная ячейка, гиперкуб, координационный полиздр, гиперкоординированный углерод

RECEIPT ALGORITHM OF PROBABLE MODULAR CELLS OF CRYSTAL STRUCTURES FROM CELLULAR COMPLEXES OF 4D SPACE

Ivanov V.V., Talanov V.M.

Laboratory of novel materials design, South-Russian state Engineering University, e-mail: valtalanov@ mail.ru, valivanov11@mail.ru

Receipt algorithm of probable fragments of modular cells from hypercube of the 4D space was discussed. The possible descriptions of cells-modules covers received from symmetric hypercube projection, the descriptions of neighbouring order atoms in crystals and hyper co-ordination carbon atoms in some organic compounds classes were analyzed.

Keywords: modular cell, hypercube, coordination polyhedron, hyper coordinated carbon atom

Гиперкуб является одним из семи известных автомодулярных политопов 4D-пространства, т.к. состоит из восьми топологически одинаковых кубических ячеек: HC- < 16, 32, 24, $8 > \{C^8\}$ [1]. Все его геометрические образы, полученные с помощью определенных топологических преобразований в 3D-пространстве, обладают дополнительными по сравнению с кубом геометрическими элементами и могут быть использованы при интерпретации нестандартных конфигураций, описывающих ближний порядок в структурах некоторых координационных соединений, особенности стереохимии некоторых молекул органических и металлорганических соединений и другие структурные аномалии. [2, 3].

Геометрический образ, соответствующий гиперкубу HC – куб внутри куба $C_{(C)}$ - <8 + 8, 12 + 12, 6 + 6> (с симметрией O_h). Для получения других вероятных геометрических образов из симплекса в 3D-пространстве можно воспользоваться

результатами его топологических преобразований. При описании топологических преобразований гиперячеек использовали следующий вид символьного представления симплекса и его возможных топологических производных: HPh $- \langle N_v, N_e, N_p, N_{ph} \rangle \{N_{ph}, ph_i\}$. Данное представление гиперполиэдра содержат информацию о его наименовании (HPh), количестве вершин (v), ребер (e), граней (f), а также количестве и типе ячеек-полиэдров (ph).

Рассмотрим топологические преобразования гиперкуба в предположении, что каждая его ячейка, прилегающая к оболочке, подчиняется правилам геометрико-топологических преобразований в 3D-пространстве. Известные топологические преобразования куба [4]: куб {444} → усеченный куб {388} → кубооктаэдр {3434} → усеченный октаэдр {466} → октаэдр {3333} в используемых здесь обозначениях могут быть представлены в виде следующей цепочки:

$$C - <\!\!8,\!12,\!6\!\!> \{\{4\}^6\} \rightarrow tC - <\!\!24,\!36,\!14\!\!> \}\{\{3\}^8\{8\}^6\} \rightarrow$$

$$CO - <12,24,14> \{\{3\}^{8}\{4\}^{6}\} \rightarrow tO - <24,36,14> \{\{6\}^{8}\{4\}^{6}\} \rightarrow O - <6,12,8> \{\{3\}^{8}\}$$

По аналогии, можно ввести следующие обозначения для изменяющихся оболочек гиперполиэдра: усеченный куб tC_(C) -<32,68,56,16> {tC C T⁸ tOpyr⁶}, кубооктаэдр CO_(C) -<20,60,64,16> {CO C T⁸ Tap⁶}, усеченный октаэдр $tO_{(C)} - \langle 32, 80, 68, 28 \rangle$ {tO C Hpyr⁸ T¹² Hap⁶}, октаэдр $O_{(C)} - \langle 14, 48, 54, 28 \rangle$ {O C Tpyr⁶ T²⁰}. Здесь и далее конфигурации всех ячеек гиперполиэдров и их вершинная тополо-

гия представлены в фигурных $\{\}$ и угловых <> скобках, соответственно. Буквенные обозначения *t*, *p*, *ap*, *pyr* приведены по первым буквам соответствующих терминов (truncated, prism, anti-prism, pyramid). В результате сплиттинг-преобразования вершин и стелейшн-дизайн граней гиперкуба можно получить следующуюцепочкуцентрированных конфигураций:

$$\begin{split} & \text{HC}_{(C)} - <\!\!16, 32, 24, 8\!\!> \{C^8\} \rightarrow tC_{(C)} - <\!\!32,\!68,\!56,\!16\!\!> \{tC \ C \ T^8 \ tOpyr^6\} \rightarrow \\ & \text{CO}_{(C)} - <\!\!20,\!60,\!64,\!16\!\!> \{CO \ C \ T^8 \ Tap^6\} \rightarrow \\ & \text{tO}_{(C)}^{\quad d1} - <\!\!32,\!80,\!68,\!28\!\!> \{tO \ C \ Hpyr^8 \ T^{12} \ Hap^6\} \rightarrow \\ & \text{O}_{(C)}^{\quad d2} - <\!\!14,\!48,\!54,\!28\!\!> \{O \ C \ Tpyr^6 \ T^{20}\}. \end{split}$$

Им соответствуют центрированные кубом геометрические образы

усеченного куба t $C_{(C)}$ < 4 + 8, 36 + 12, 14 + 6>,

кубооктаэдра СО_(C) – <12 + 8, 24 + 12, 14 + 6>,

усеченного октаэдра tO_(C) -<24 + 8, 36 + 12, 14 + 6>

и октаэдра О_(C) – <6 + 8, 12 + 12, 8 + 6>.

При всех этих преобразованиях предполагается, что изолированная от оболочки симметричной проекции кубическая ячейка не подчиняется правилам геометрико-топологических преобразований в 3D-пространстве, т.е. сохраняет свою форму и ориентацию относительно преобразующихся ячеек. Символы дуальности относятся только к внешней границе гиперячейки и характеризуют ее ориентацию либо по отношению к внешней границе исходной гиперячейки (d1), либо по отношению к внутреннему изолированному домену (d2). Отметим, что при данных геометрико-топологических преобразованиях вершины гиперячейки перестают быть топологически эквивалентными и расслаиваются на две группы: постоянную группу вершин внутреннего домена и переменную группу вершин преобразующейся оболочки проекции гиперячейки.

Преобразование производных от гиперкуба конфигураций в их дуальные образы за счет превращения геометрических центров ячеек в вершины, а граней – в ребра приводит к образованию следующих трех новых конфигураций. Им соответствуют центрированные геометрические образы дитетраэдра diT_c – <4 + 4 + 1, 12, 8>, объединения куба и октаэдра (C + O)_{2c} – <8 + 6 + 1, 12 + 12, 6 + 8> и объединения куба, октаэдра и кубооктаэдра (C + O + CO)_{2c} – <8 + 6 + 12 + 1, 12 + 12 + 24, 6 + 8 + 14>. При описании симметрии геометрических образов приведены самые симметричные конфигурации.

В результате стретч-оупен-дизайна гиперкуба через его грани получим еще

несколько конфигураций: центрированную квадратом гексагональную призму $Hp({4}) - (12 + 4, 22 + 16, 9 + 16, 10)$ {Hp, $\{4\}, Tp^7, \frac{1}{2}I^2\}, октагональную призму$ $Ор – <16, 24, 10, 1> {Op}, триплет из те-$ трагональных антипризм 3Tap – <8 + 8,12 + 8 + 12, 20 + 8, $3 > {Tap^3}$. Cootbetter ющие геометрические образы - центрированная тетрагоном гексагональная призма Нр _{4} − <12, 22, 9>, октагональная призма Ор − <16, 24, 10>, объединение трех тетрагональных антипризм 3Tetap – <16, 32, 26>. Еще четыре геометрических образа оболочек ячеек-модулей могут быть получены путем вытягивания вершин внутреннего октаэдра на внешнюю координационную сферу: куб + усеченный куб (C + tC) < 8 + 24, 6 + 14>, куб + кубооктаэдр 12 + 36, (С + СО) <8 + 12, 12 + 24, 6 + 14>, куб + усеченный октаэдр (C + tO) <8 + 24, 12 + 36, (C + O) < 8 + 6, 6 + 14> и куб + октаэдр 12 + 12, 6 + 8 >.

Описания форм оболочек всех вероятных симметричных форм ячеек-модулей, полученных из симметричной проекции гиперкуба, а также их символьные обозначения, симметрия и качественный состав приведены в табл. 1.

Все приведенные в таблице атомные конфигурации являются известными в кристаллохимии неорганических кристаллов [4–8]. Однако не все они являются такими модулями, с помощью которых можно без пропусков заполнить 3D-пространство (4, 5]. Большинство этих модулей по конфигурации являются преобразованными комбинациями правильных и полуправильных изогонов [8]. Симметрия этих ячеек-модулей в вырожденных модулярных структурах может быть разной [9–13].

Среди ячеек-модулей, указанных в табл. 1, имеются и дельтаэдрические ячейки. Они представлены в основном п-гонбипирамидальными полиэдрами (где n = 3 - 6, табл. 2). Оболочки дельтаэдров могут быть каркасами молекул и молеку-

лярных комплексов различных органических и металлорганических соединений [2, 3]. Поэтому от позиционирования кар-

касного атома углерода в составе группы СН существенно зависит его координация.

Таблица 1

Описания оболочек ячеек-модулей, полученных из симметричной проекции гиперкуба.

Гиперячейка	Форма оболочки ячеек-модулей, их симметрия и состав		
Гиперкуб HC <16,32,24,8> {C ⁸ }	куб С _(C) - <8 + 8, 12 + 12, 6 + 6> (О _{<i>h</i>}) (А ₈ А ₈)		
	усеченный куб tC _(C) – <24 + 8, 36 + 12, 14 + 6> (O_h) (A_8X_{24})		
	кубооктаэдр $CO_{(C)} - \langle 12 + 8, 24 + 12, 14 + 6 \rangle (O_h) (A_8X_{12})$		
	усеченный октаэдр tO _(C) – $<24 + 8$, 36 + 12, 14 + 6> (O_h) (A ₈ X ₂₄)		
	октаэдр $O_{(C)} - < 6 + 8, 12 + 12, 8 + 6 > (O_h) (A_8 X_6)$		
	дитетраэдр di $T_c - \langle 4 + 4 + 1, 12, 8 \rangle (T_h) (AX_4Y_4)$		
	куб + октаэдр $(C + O)_{2c} - \langle 8 + 6 + 1, 12 + 12, 6 + 8 \rangle (O_h) (AX_8Y_6)$		
	куб + октаэдр + кубооктаэдр		
	$(C + O + CO)_{2c} - \langle 8 + 6 + 12 + 1, 12 + 12 + 24, 6 + 8 + 14 \rangle \langle O_h \rangle (AX_8Y_6Z_{12})$		
	гексагональная призма $Hp_{4} - <12 + 4, 22, 9 > (C_{2v}) ((A_4X_{12}))$		
	дитетрагональная призма diTetp – <8 + 8, 12 + 12, 10> (C_{4V}) ($A_0X_8Y_8$)		
	три тетрагональных антипризмы 3Tetap – $<4 + 8 + 4$, 32, 26> (D_{4h}) (A ₀ X ₈ Y ₈)		
	куб + усеченный куб (C + tC) <8 + 24, 12 + 36, 6 + 14> (O_h) (A ₀ X ₈ Y ₂₄)		
	куб + кубооктаэдр (C + CO) <8 + 12, 12 + 24, 6 + 14> (O_h) (A $_0X_8Y_{12}$)		
	куб + усеченный октаэдр (C + tO) < 8 + 24, 12 + 36, 6 + 14> (O_h) (A ₀ X ₈ Y ₂₄)		
	куб + октаэдр (C + O) <8 + 6, 12 + 12, 6 + 8> (O_h) ($A_0X_8Y_6$)		

Таблица 2

Дельтаэдрические ячейки-модули, полученные из гиперкуба 4D пространства

Число вершин дельтаэдра	Состав и символьное обозначе- ние дельтаэдра	Гиперкомплексы, инициирующие дельтаэдры	Возможное координационное число каркасного атома углерода, (1 + <i>k</i>)
6	$AX_6(O_c)$	S_{T}, S_{C}, S_{O}, HC	5
8	$AX_{6}Y_{2}$ (Tap _{bc}), $AX_{4}Y_{4}$ (diT _c)	S _T , S _{Hp} , HO,	5, 6
	$AX_8 (HbiPyr)_c, AX_6Y_2 (HbiPyr)_c,$	HC, HT	6, 8
14	$A_{0}X_{8}Y_{6}(C+O),$	HC, HO,	5, 7
	$AX_{8}Y_{6}(C+O)_{c}$	$\mathbf{S}_{\mathrm{T}}, \mathbf{S}_{\mathrm{C}}, \mathbf{S}_{\mathrm{O}}, \mathrm{HC}, \mathrm{HO}$	6, 8

Показана формальная возможность одновременной реализации двух разных гиперкоординаций углерода, в частности: $(1+\bar{k})=\bar{6}$ и 8 для дельтаэдра (HbiPyr) и для дельтаэдрического комплекса $(C + O)_{c}$, (1 + k) = 5 и 7 для дельтаэдрического комплекса (С + О). Качественно это результат не противоречит известным экспериментально установленным данным, в частности для клозо-карборана $1,6-C_2B_8H_{10}$ и металлакарборана С₂В₇Н₀СоСр (дельтаэдры в форме двухшапочной квадратной антипризмы, (1 + k) = 5 и 6) [2, 3, 14]. Некоторые центрированные полиздры также могут содержать гиперкоординированный атом углерода, занимающий центральную позицию. В частности, это реализуется в карбидокарбонильных металлических кластерах: $Ru_6(CO)_{17}C$, $Fe_5M(CO)_{16}C$ (где M – Ni, Pd, Pt) и $Fe_4M_2(CO)_{14}C$ (где M – Mo, Ni) в виде центрированного октаэдра O_c, $[M_6(CO)_{15}C]^{2-}$ (где M – Co, Rh), и $[Co_2Rh_4(CO)_{15}C]^{2-}$ в виде центрированной тригонпризмы Tp_c , $[Ni_8(CO)_{16}C]^{2-}$ в виде центрированной тетрагональной антипризмы Tetap_c [2].

Список литературы

1. Стюарт Я. Концепции современной математики: пер. с англ. Н.И. Плужниковой и Г.М. Цукерман – Минск: Выш. школа, 1980. – 384 с.

2. Ола Дж., Пракаш Г.К.С., Уильямс Р.Е., Филд Л.Д., Уэйд К. Химия гиперкоординированного углерода: пер. с англ.; под ред. В.И. Минкина. – М.: Мир, 1990. – 336 с.

3. Минкин В.И., Миняев Р.М., Хоффманн Р. Неклассические структуры органических соединений: нестандартная кристаллохимия и гиперкоординация // Успехи химии. – 2002. – Т.71. – № 11. – С. 989–1011.

4. Урусов В.С. Теоретическая кристаллохимия. – М.: МГУ, 1987. – 276 с.

5. Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. – М.: ФИЗМАТЛИТ, 2010. – 264 с.

6. Пирсон У. Кристаллохимия и физика металлов и сплавов./ Пер. с англ. Под ред. С.Н. Горина. – М.: Мир, 1977. – Ч. 1. – 420 с.; Ч. 2. – 472 с.

7. Крипякевич П.И. Структурные типы интерметаллических соединений. – М.: Наука, 1977. – 290 с.

8. Уэллс А. Структурная неорганическая химия. В 3-х томах: пер. с англ.; под ред. М.А. Порай-Кошица

и П.М. Зоркого. – М.: Мир, 1987/88. – Т. 2. – 696 с.; Т. 3. – 564 с.

9. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. – Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. – 204 с.

10. Иванов В.В., Таланов В.М. Принцип модулярного строения кристаллов // Кристаллография. – 2010. – Т. 55, № 3. – С. 385–398.

11. Иванов В.В., Таланов В.М. Алгоритм выбора структурного модуля и модулярный дизайн кристаллов // Журнал неорганической химии. – 2010. – Т. 55, № 6. С. 980–990.

12. Иванов В.В., Таланов В.М. Разбиение и структурирование пространства, описание процесса формирования модульного кристалла // Успехи современного естествознания. – 2012. – № 8. – С. 75–77.

13. Иванов В.В., Таланов В.М. Формирование структурного модуля для модулярного дизайна в 3D-пространстве // Успехи современного естествознания. – 2012. – № 9. – С. 74–77.

14. Грибанова Т.Н., Миняев Р.М., Минкин В.И. Неклассические системы с двумя гиперкоординированными атомами в полиэдрическом каркасе // Доклады Академии наук. – 2008. – Т. 418. – № 2. – С. 198–202.