УДК 538.95.405

РАЗМЕРНЫЕ ЭФФЕКТЫ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЧИСТЫХ МЕТАЛЛОВ

Юров В.М., Лауринас В.Ч., Гученко С.А., Завацкая О.Н.

Карагандинский государственный университет им. Е.А. Букетова, Караганда, e-mail: exciton@list.ru

В работе для 55 элементов периодической системы рассчитаны поверхностное натяжение, критический радиус и постоянная Толмена. Для металлов с низкой температурой плавления величина поверхностного натяжения составляет доли Дж/м², а для тугоплавких — единицы Дж/м². Критический радиус d характеризует внутренние размерные эффекты и не превышает 10 нм для исследованных металлов.

Ключевые слова: поверхностное натяжение, металл, постоянная Толмена

DIMENSIONAL EFFECTS AND SUPERFICIAL TENSION OF PURE METALS

Jurov V.M., Laurinas V.Ch., Guchenko S.A., Zavatskaja O.N.

Karaganda state university of E.A. Buketov, Karaganda, e-mail: exciton@list.ru

In work for 55 elements of periodic system the superficial tension, critical radius and Tolmen's constant are calculated. For metals with low temperature of fusion the size of a superficial tension makes shares j/m2, and for refractory – units j/m2. The critical radius d characterises internal dimensional effects and does not exceed 10 nanometers for the investigated metals.

Keywords: superficial tension, metal, Tolmen's constant

Из 118 химических элементов, открытых на сегодняшний день, 96 относятся к металлам. Несмотря на появление большого количества неметаллических материалов, их значение в технике и в жизни человека остается огромным. При работе различных машин и механизмов во многих случаях основную роль играет поверхность металла и физико-химические процессы на его поверхности.

В настоящей работе приведены экспериментальные и теоретические результаты по поверхностному натяжению чистых металлов.

Постоянная Толмена б является основным параметром в термодинамике размерных эффектов. Физически она означает расстояние от поверхности натяжения до эквимолекулярной поверхности [1]. В большинстве работ считается, что экспериментальное определение постоянной Толмена принципиально невозможно, поэтому основной упор делается на ее расчетах с использованием численного моделирования [2]. В работе [3] получено выражение для постоянной Толмена:

$$\delta = \frac{3h}{2} (\alpha - 1),$$

где h — высота атомного монослоя, α показывает, во сколько раз среднеквадратичное смещение атомов на поверхности отличается от такового в объеме.

Рассчитанная по этой формуле постоянная Толмена для золота оказалась равной

0,275 nm. В настоящей работе мы рассмотрим методы экспериментального определения постоянной Толмена.

Поверхностное натяжение твердых тел

Экспериментальное определение поверхностного натяжения твердых тел затруднено тем, что их молекулы (атомы) лишены возможности свободно перемещаться. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления [4].

Недавно нами были предложены методы экспериментального определения поверхностного натяжения твердых диэлектриков и магнитных материалов, основанные на универсальной зависимости физического свойства твердого тела от его размеров [5-7]. В этой работе мы проводим сравнение нашего метода с методом «нулевой ползучести».

В методе «нулевой ползучести» (метод Таммана-Удина) образец (длинной нити, фольги) нагревают до достаточно высокой температуры, так что он начинает сокращаться по длине под действием поверхностных напряжений. К образцу прикладывается внешняя сила, поддерживающая неизменной форму образца. По величине этой силы определяют величину поверхностного натяжения. Экспериментальные данные для некоторых металлов взяты из работы [8] и приведены в табл. 1.

В работах [9-10] и ряде других нами получена формула, которая описывает зависи-

мость физического свойства твердого тела от его размера:

$$A(r) = A_0 \cdot \left(1 - \frac{d}{r}\right). \tag{1}$$

Здесь A_0 — физическое свойство массивного образца; A(r) — физическое свойство малой частицы или тонкой пленки; d — критический радиус или критическая толщина пленки, начиная с которого проявляются размерные эффекты. Для критического радиуса нами получена формула:

$$d = \frac{2\sigma v}{RT}. (2)$$

Здесь σ – поверхностное натяжение массивного образца; υ – молярный объем; R – газовая постоянная; T – температура.

В монографии японских и российских физиков [11] считается, что уменьшение температуры плавления малых частиц связано с тем, что атомы на поверхности имеют меньшее число соседей, чем в объеме, следовательно, менее крепко связаны и менее ограничены в своем тепловом движении. Там же отмечается, что обычно уменьшение температуры нанокристалла обратно пропорционально его размеру. Однако теории этого эффекта пока нет.

Таблица 1 Экспериментальные данные по поверхностному натяжению некоторых металлов в твердой и жидкой фазах и их сравнение с нашим методом

Металл	Температура, °С	σ, Дж/м² [8] (твердая фаза)	σ, Дж/м² (наш метод)	σ, Дж/м² (жидкая фаза)
Ag	930	$1,14 \pm 0,09$	1,234	0,126
Al	180	$1,14 \pm 0,2$	1,070	0,093
Au	1040	$1,37 \pm 0,15$	1,312	0,132
Cu	900	$1,75 \pm 0,09$	1,356	0,177
Pt	1310	$2,3 \pm 0,8$	-	0,208
W	1750	$2,9 \pm 0,3$	2,873	-
Zn	380	0,83	0,693	-

Если воспользоваться аналогией скалярных полей, то мы получаем для температуры плавления малых частиц уравнение, аналогичное (1):

$$T_{\text{\tiny ILII}} = T_0 \left(1 - \frac{d}{r} \right), \tag{3}$$

где $T_{\scriptscriptstyle 0}$ – температура плавления массивного образца.

Используя экспериментальные зультаты из работы [11], можно по нашей формуле (3) определить поверхностное натяжение малых частиц золота. При температуре T = 1040 °C величина поверхностного натяжения золота оказалась равной: $\sigma = 1.312 \text{ Дж/м}^2$. Эта величина незначительно отличается от величины поверхностного натяжения, полученной в методе «нулевой ползучести» (таблица 1). В работе [12] для нанокристаллов алюминия получена экспериментальная кривая, аналогичная кривой из работы [11]. Расчет величины поверхностного натяжения по нашей формуле (3) дал следующий результат: $\sigma = 1,070 \text{ Дж/м}^2$.

Из формулы (2) получается линейная зависимость поверхностного натяжения от температуры:

$$\sigma = \alpha T. \tag{4}$$

Используя данные табл. 1, нетрудно вычислить коэффициент α . Если учесть погрешность измерений (табл. 1), то значение коэффициента равно $\alpha \approx 10^{-3} \ \text{Дж} \cdot \text{м}^{-2} \cdot \text{K}^{-1}$ для всех металлов. Таким образом, оценку поверхностного натяжения металлов можно сделать по их температуре плавления и коэффициенту α по формуле (4). Из табл. 1 следует, что в жидкой фазе металлов поверхностное натяжение уменьшается для всех металлов примерно в 10 раз.

Постоянная Толмена

Основы термодинамики криволинейных границ раздела были заложены еще Дж. Гиббсом [13]. Затем Р.Толмен и его последователи свели эту проблему к учету размерной зависимости поверхностного натяжения (см., например, [14]). В 1949 г. Р. Толмен вывел уравнение для поверхностного натяжения σ :

$$\frac{\sigma}{\sigma_{\infty}} = \left(1 + \frac{2\delta}{R_s}\right)^{-1}.$$
 (5)

Здесь σ_{∞} — поверхностное натяжение для плоской поверхности; $R_{\rm s}$ — радиус поверхности натяжения; $\delta > 0$ — расстояние между эквимолекулярной разделяющей по-

верхностью и поверхностью натяжения для плоской границы. Порядок величины параметра δ, называемого толменовской длиной или постоянной Толмена, должен быть сравним с эффективным молекулярным диаметром a. При $R >> \delta$ формула Толмена может быть переписана в виде:

$$\sigma/\sigma_{\infty} = 1 - 2\delta/R. \tag{6}$$

Сравнение формул (6) и (1) приводит к результату: $\delta = d/2$. Таким образом, мы имеем возможность экспериментального определения постоянной Толмена по зависимости (1) и соотношению (2).

Щелочные металлы

В табл. 2 представлены результаты расчета поверхностного натяжения о и постоянной Толмена б для щелочных металлов. Здесь $T_{_{\Pi\Pi}}$ – температура плавления металла; $\sigma_{_{\Pi\Pi}}$ – поверхностное натяжение при температуре, близкой к температуре плавления; σ_{300} – поверхностное натяжение при комнатной температуре; υ – молярный объем.

Таблица 2 Поверхностное натяжение и постоянная Толмена щелочных металлов

Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Li	452	0,452	0,133	1,4	13,1	0,70
Na	371	0,371	0,110	2,1	23,7	1,05
K	337	0,337	0,101	3,7	45,5	1,84
Rb	312	0,312	0,093	4,2	56,2	2,10
Cs	302	0,302	0,091	5,2	71,1	2,60

Из табл. 2 видно, что в ряду $Li \rightarrow Cs d u \delta$ увеличиваются почти в 4 раза.

Щелочноземельные металлы

Таблица 3 Поверхностное натяжение и постоянная Толмена щелочноземельных металлов

Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Be	1558	1,558	0,463	1,8	4,84	0,90
Mg	923	0,923	0,276	3,1	14,0	1,55
Ca	1118	1,118	0,335	7,0	26,02	3,50
Sr	1030	1,030	0,307	8,3	33,7	4,15
Ba	983	0,983	0,295	8,9	37,62	4,45

Из табл. 3 видно, что в ряду ${
m Be} o {
m Ba}$ значения d и δ увеличиваются чуть больше, чем в 4 раза.

Подгруппа бора

Таблица 4 Поверхностное натяжение и постоянная Толмена металлов подгруппы бора

Металл	<i>Т</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, cм ³ /моль	δ, нм
Al	933	0,933	0,277	2,2	9,9	1,1
Ga	302,8	0,303	0,095	0,9	11,8	0,45
In	429	0,429	0,127	1,6	15,7	0,80
Tl	576	0,576	0,173	2,4	17,3	1,20

В случае металлов подгруппы бора значения d и δ увеличиваются в ряду $Ga \rightarrow Tl$.

Подгруппа углерода

 Таблица 5

 Поверхностное натяжение и постоянная Толмена металлов подгруппы углерода

Металл	<i>Т</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	d, hm	υ, см ³ /моль	δ, нм
Si	1686	1,686	0,504	4,9	12,1	2,45
Ge	1231	1,231	0,336	4,0	13,6	2,00
Sn	505	0,505	0,153	2,0	16,3	1,00
Pb	600	0,600	0,178	2,6	18,2	1,30

Здесь кремний и германий являются полупроводниками и величина d и δ уменьшается. Для олова и свинца изменение величин d и δ аналогично другим металлам.

Халькогены Таблица 6Поверхностное натяжение и постоянная Толмена металлов халькогенов

Металл	$T_{\rm nn}$, K	$\sigma_{_{\rm пл}},$ Дж/м 2	σ ₃₀₀ , Дж/м²	d, HM	υ, см³/моль	δ, нм
Se	493	0,493	0,144	1,9	16,4	0,95
Te	725	0,725	0,214	3,5	20,4	1,75

Здесь различия в величинах d и δ – почти в 2 раза.

Подгруппа меди Таблица 7 Поверхностное натяжение и постоянная Толмена металлов подгруппы меди

Металл	<i>T</i> _{пл} , К	$\sigma_{_{\Pi\Pi}}$, Дж/м 2	σ_{300} , Дж/м 2	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Cu	1356	1,356	0,402	2,3	7,12	1,15
Ag	1234	1,234	0,375	3,1	10,3	1,55
Au	1336	1,336	0,403	3,3	10,2	1,65

Здесь различия в величинах d и δ не столь значительны, хотя общая закономерность соблюдается.

	Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	d, hm	υ, см ³ /моль	δ, нм
	Zn	693	0,693	0,203	1,5	9,2	0,75
Ī	Cd	594	0,594	0,182	1,9	13,0	0,95
	Hg	234	0,234	0,069	0,83	14,8	0,41

Здесь закономерность в величинах d и δ нарушается для ртути, которая находится в жидком состоянии.

Металл	$T_{\text{\tiny III}}$, K	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Cr	2173	2,173	0,657	3,8	7,2	1,90
Mo	2873	2,873	0,861	6,5	9,4	3,25
W	3673	3,673	1,110	8,4	9,5	4,20

Здесь различия в величинах d и δ – почти в 2 раза.

Подгруппа марганца

Таблица 10 Поверхностное натяжение и постоянная Толмена металлов подгруппы марганца

Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	d, hm	υ, см ³ /моль	δ, нм
Mn	1517	1,517	0,459	2,8	7,6	1,40
Tc	2473	2,473	0,738	5,1	8,6	2,55
Re	3423	3,423	0,993	7,1	8,9	3,55

Закономерность в величинах d и δ аналогична предыдущим случаям.

Подгруппа железа

Таблица 11 Поверхностное натяжение и постоянная Толмена металлов подгруппы железа

Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Fe	1808	1,808	0,544	3,1	7,1	1,55
Со	1763	1,763	0,520	2,8	6,7	1,40
Ni	1726	1,726	0,509	2,7	6,6	1,35

Здесь наблюдается обратная закономерность в величинах d и δ .

Лантаноиды

Лантаноиды – семейство из 14 химических элементов III группы 6-го периода периодической таблицы. В табл. 12 представлены результаты расчета поверхностного натяжения σ и постоянной Толмена δ для лантаноидов.

Таблица 12 Поверхностное натяжение и постоянная Толмена лантаноидов

Металл	<i>T</i> _{пл} , К	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	<i>d</i> , нм	υ, см ³ /моль	δ, нм
Ce	1077	1,077	0,325	5,4	20,70	2,70
Pr	1208	1,208	0,359	6,0	20,82	3,00
Nd	1298	1,298	0,387	6,4	20,58	3,20
Sm	1325	1,325	0,393	6,3	19,95	3,15
Eu	1175	1,175	0,351	8,3	29,42	4,15
Gd	1585	1,585	0,473	7,6	19,98	3,80
Tb	1631	1,631	0,486	7,5	19,21	3,25
Dy	1680	1,680	0,497	7,6	19,04	3,80
Но	1734	1,734	0,518	7,8	18,74	3,90
Er	1770	1,770	0,526	7,8	18,47	3,90
Tm	1818	1,818	0,542	7,4	17,01	3,70
Yb	1097	1,097	0,326	6,5	24,80	3,25
Lu	1925	1,925	0,574	8,2	17,78	4,10

В случае лантаноидов монотонного увеличения параметров d и δ не наблюдается. Эти значения примерно равны для Pr → Sm, Gd → Tm, Eu и Lu. Несколько отличные значения имеет Се. В диапазон значений параметров d и δ для лантаноидов попадают W (табл. 9) и Re (табл. 10).

Актиноиды

Таблица 13 Поверхностное натяжение и постоянная Толмена актиноидов

Металл	$T_{\rm nn}$, K	σ _{пл} , Дж/м²	σ ₃₀₀ , Дж/м²	d, HM	υ, см ³ /моль	δ, нм
Ac	1323	1,323	0,393	7,1	22,5	3,55
Th	2023	2,023	0,607	9,6	19,7	4,80
U	1405	1,405	0,418	4,2	12,5	2,10
Np	913	0,913	0,277	2,6	11,7	1,30
Pu	910	0,910	0,273	2,7	12,3	1,35
Am	1273	1,273	0,383	6,4	20,8	3,20
Bk	1298	1,298	0,388	5,2	16,7	2,60

Как и в случае лантаноидов монотонного изменения параметров d и δ не наблюдается, хотя их значения близки к группе лантаноидов.

Заключение

Суммируя результаты проведенных исследований, можно сделать следующие основные выводы:

- для 55 элементов периодической системы рассчитаны поверхностное натяжение, критический радиус и постоянная Толмена;
- для металлов с низкой температурой плавления величина поверхностного натяжения составляет доли Дж/м², а для тугоплавких единицы Дж/м²;
- критический радиус d характеризует внутренние размерные эффекты и не превышает 10 нм для исследованных металлов.

Список литературы

- 1. Альмяшева О.В., Гусаров В.В., Лебедев О.В. Поверхностные явления: учебное пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», $2004-28~\mathrm{c}$.
- 2. Слобняков Н.Ю., Самсонов В.М., Базулев А.Н. и др. О поверхностном натяжении нанокристаллов различной

- природы // Конденсированные среды и межфазные границы. 2007. Том 9, №3. С. 250-255.
- 3. Рехвиашвили С.Ш., Киштикова Е.В., Кармокова Р.Ю. и др. К расчету постоянной Толмена // Письма в ЖТФ. 2007. Том 33, Вып. 2. С. 1-7.
- 4. Гохштейн А.Я. Поверхностное натяжение твердых тел и адсорбция. М.: Наука, 1976. 256 с.
- 5. Юров В.М. и др. Способ измерения поверхностного натяжения твердых тел: Патент РК №57691. Астана, 2009.
- 6. Юров В.М. и др. Способ измерения поверхностного натяжения и плотности поверхностных состояний диэлектриков: Патент РК №58155. Астана, 2009.
- 7. Юров В.М. и др. Способ измерения поверхностного натяжения магнитных материалов. Патент РК №58158. Астана, 2009.
- 8. Ролдугин В.И. Физикохимия поверхности. Долгопрудный: Издательский Дом «Интеллект», 2008.-568 с.
- 9. Юров В.М. Поверхностное натяжение твердых тел // Вестник КарГУ, сер. Физика. 2007. № 1 (45). С. 23-29.
- 10. Jurov V.M. Superfecial tension of pure metals // Eurasian Physical Technical journal. 2011. Vol. 8, N_2 1(15). P. 10-14.
- 11. Оура К., Лифшиц В.Г., Саранин А.А. и др. Введение в физику поверхности. М.: Наука, 2006. 490 с.
- 12. Kotlyar V.G., Zotov A.V., Saranin A.A, et al. // Phys. Rev. B. 2002. V. 66, N216, P. 165-169.
- 13. Гиббс Дж.В. Термодинамические работы. М. Л.: ГИТТЛ, 1950. 303 с.
- 14. Tolman R.C. The effect of droplet size on surface tension // J. Chem. Phys. $-\,1949.-\,Vol.\,17,\, \text{N}\!\!\cdot\!\!2.-P.\,333-337.$