В заключение укажем, что «материнская» диаграмма (рисунок, слева) реализуется в шпинельных твёрдых растворах Fe_{1-x}Mn_xCr₂O₄ [9], Fe_{1+x}Cr_{2+x}O₄ [10], Cu_{1-x}Ni_xCr₂O₄ [11–13], а «дочерние» диаграммы – в твёрдых растворах $Fe^{2+}Fe^{3+}Cr_{2-x}O_4$ [14], $Fe_{1+x}V_{2-x}O_4$ [15], $MnTi_{2-x}V_xO_4$ [16] и биметаллических системах Sn – Zr [17], Nb – Pd [18].

Дальнейшее развитие излагаемой теории будет связано с теоретическим исследованием распада мультикритических точек фазовых диаграмм, отвечающих термодинамическим феноменологическим потенциалам с параметрами порядка другой симметрии.

Список литературы

1. Ландау Л.Д. Собрание трудов. – М.: Наука, 1969. – Т. 1. – С. 234–252.

2. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. – М.: Наука, 1976. – 584 с.

Гуфан Ю.М. Структурные фазовые переходы. – М.: Наука, 1982. – 304 с.

4. Toledano J.-C., Toledano P. The Landau Theory of Phase Transitions. - World Scientific, 1987. - 451 p.

5. Изюмов Ю.А., Сыромятников В.Н. Фазовые переходы и симметрия кристаллов. – М.: Наука, 1984. – 248 с

6. Сахненко В.П., Таланов В.М. // Физ. тв. тела. – 1979. – Т. 21,В. 8. – С. 2435–2444.

7. Кутьин Е.И. Симметрийно обусловленные особенности фазовых диаграмм при фазовых переходах, описываемых многокомпонентным параметром порядка: дис. ... канл. физ.-мат. наук. – Ростов-на-Дону: РГУ, 1988. – 150 с.

8. Гуфан А.Ю. Феноменологическая теория фазовых переходов с учётом изменения полносимметричной компоненты плотности вероятности распределения заряда: дис. ... канд. физ.-мат. наук. – Ростов-на-Дону: РГУ, 2005. – 142 с.

9. Ohtani S., Watanabe Y., Saito M. et al. // J. Phys.: Condens. Matter. - 2010. - Vol. 22, № 17. - P. 176003.

10. Kose K., Iida S. // J. Appl. Phys. - 1984. - Vol. 55, № 6. – P. 2321–2323

11. Kino Y., Miyahara S. // J. Phys. Soc. Japan. - 1966. - Vol. 21. - P. 2732.

12. Tovar M., Torabi R., Welker C. et al. // Physica B. – 2006. – Vol. 385–386. – Part 1. – P. 196–198.

13. Kataoka M., Kanamori J. // J. Phys. Soc. Jpn. – 1972. – Vol. 32, № 1. – P. 113–134.

14. Levinstein H.J., Robbins M., Capio. // Mat. Res. Bull. -1972. - Vol. 7. - P. 27-34.

15. Riedel E., Kahler J., Pfeil N. // Z. Naturforsch. – 1989. – Vol. 44b. – s. 1427–1437.

16. Sonehara T., Kato K., Osaka K., Takata M., Katsufuji T.// Phys. Rev. - 2006. - Vol. 74. - P. 104424-1-104424-7.

17. Abriata J.P., Bolcich J.C., Arias D. // Bulletin of Alloy Phase Diagrams ASM International. – 1983. – Vol. 4, №. 2. 18. Chandrasekharaiah M.S. // Bulletin of Alloy Phase

Diagrams ASM International. - 1988. - Vol. 9, №4.

СИММЕТРИЯ ПАРАМЕТРА ПОРЯДКА ФАЗОВОГО ПЕРЕХОДА Fd3m \rightarrow P2,3 В ШПИНЕЛИ LiZn_{0.5}Mn_{1.5}O₄

¹Таланов В.М., ²Широков В.Б.

¹Южно-Российский государственный технический университет; ²Южный научный центр Российской академии наук, Новочеркасск, e-mail: valtalanov@mail.ru

Одним из наиболее эффективных катодных материалов для литиевых источников тока является LiCoO₂, позволяющий получать напряжение 4 вольта. По сравнению с этим катодным материалом литий марганцевая шпинель Li_{Mn₂O₄} представляется еще более привлекательной, так как этот материал более дешевый и нетоксичный [1]. Интеркаляция лития происходит при 3 В в интервале концентраций лития $1 \le x \le 2$, но при этом происходит значительное ухудшение циклируемости материала из-за структурных изменений (превращения кубической шпинели LiMn2O4 в тетрагональную Li₂Mn₂O₄ в процессах заряда и разряда), обусловленных кооперативным эффектом Яна-Теллера [2, 3]. Этот эффект наблюдается, в частности, в веществах, содержащих Mn(III). Тетрагональное искажение шпинели влияет на геометрию трехмерных путей движения ионов Li⁺. Поэтому, искажение Яна-Теллера – одна из самых важных причин, обусловливающих исчезновение электрохимической активности шпинели LiMn₂O₄ [4].

Кубическая литий марганцевая шпинель позволяет получать и более высокое напряжение 4 В при содержании лития $0 \le x \le 1$, если она не претерпевает структурных изменений, оставаясь при циклировании в кубической фазе [1]. Поэтому предпринимались многочисленные попытки подавить фазовый переход и стабилизировать кубическую фазу, вводя различные добавки (например, M = Ni, Cu, Zn, Co, Cr, Al, Mn и др.) [1, 5-10 и др.]. Эти катионы могут занимать как тетраэдрические позиции в структуре шпинели (например, Zn, Mg), так и октаэдрические (например, Со, Сг). Для некоторых составов при определенных условиях синтеза замещение катионов сопровождается их упорядочением. Так, например, в шпинели LiMg_{0.5}Mn_{1.5}O₄ рентгеноструктурным исследованием было установлено упорядочение катионов Mg и Mn в октаэдрических позициях, приводящее к понижению симметрии кристалла до Р4,32 [11-13]. Такой же тип упорядочения катионов Ni и Mn в октаэдрических позициях отмечается и в шпинели LiNi_{0.5}Mn_{1.5}O₄ [14]. Необычное упорядочение катионов предложено для LiZn_{0.5}Mn_{1.5}O₄ [14]. В этом веществе атомы Zn находятся в тетраэдрических узлах (круглые скобки), а Мп – в октаэдрических позициях (квадратные скобки); структурная формула имеет вид: (Li₀₅Zn₀₅)[Li₀₅Mn₁₅]O₄.

Три схемы упорядочения катионов были предложены в предыдущих работах для шпинели LiZn_{0.5}Mn_{1.5}O₄ [1]. В зависимости от условий получения образцов неупорядоченная шпинельная фаза с пространственной симметрией Fd3m наблюдалась в материалах, полученных при 750°С, упорядоченная структура с энантиоморфными пространственными группами Р4,32 и Р4,32 наблюдалась в материалах, полученных при 600 °С и структура с катионным порядком в тетраэдрических и октаэдрических позициях и пространственной группой Р2,3 наблюдалась в медленно охлажденных материалах. Именно эта структура является равновесной и изучается в данной работе.

ADVANCES IN CURRENT NATURAL SCIENCES №3, 2012 Используя результаты теоретико-группового анализа фазовых превращений, происходящих по одному критическому неприводимому представлению (НП) в группе Fd3m [15-17], получим, что пространственная группа P2₁3 (Т⁴) может быть индуцирована четырьмя различными представлениями группы Fd3m:

- шестимерным НП $k_{10}(\tau_4)$, стационарный вектор ($\eta 0 \eta 0 \eta 0$),

– двенадцатимерным НП $k_8(\tau_1)$, стационарный вектор (0 0 0 0 0 0 η -η η -η η -η),

– двенадцатимерным НП $k_8(\tau_2)$, стационарный вектор (0 0 0 0 0 0 η -η η -η η -η),

– пересечением шестимерного НП $k_{10}(\tau_3)$, по которому преобразуется шестикомпонентный параметр порядка η и одномерного НП $k_{11}(\tau_4)$, по которому преобразуется однокомпонент-

Здесь матрицы шестимерного представления выделены отдельной строкой, в столбец записана главная диагональ. Симметрия (1) допускает 24 низкосимметричные фазы.

Список литературы

1. Lee Y.J., Park S.H., Eng C., Parise J.B., Grey C.P. Cation Ordering and Electrochemical Properties of the Cathode Materials LiZn $Mn_2 A_4$, 0 < x < 0.5: A ⁶Li Magic-Angle Spinning NMR Spectroscopy and Diffraction Study // Chem. Mater. – 2002. – Vol. 14. –P. 194–205.

2. Езикян В.И., Ерейская Г.П., Ходарев О.Н., Таланов В.М. Электрохимическое и структурное исследование обратимости литиймарганцевых шпинелей в апротонных электролитах // Электрохимия. – 1988. – Т. 24, Вып. 12. – С. 1599-1604.

3. Таланов В.М. Структурный механизм тетрагонального ян-теллеровского искажения шпинелей // Изв. АН СССР. Неорган. материалы. – 1989. – Т. 25, №6. – С. 1001-1005.

4. Chung K.Y., Ryu C.-W., Kim K.-B. Onset mechanism of Jahn-Teller distortion in 4 V LiMn₂O₄ and its suppression by LiM₂₀₅Mn₁₉O₄(M = Co, Ni) coating // J. Electrochem. Soc. – 2005. – Vol. 152, Ne4. – A791–A795.

5. Wakihara M. Lithium Manganese Oxides with Spinel Structure and Their Cathode Properties for Lithium Ion Battery // Electrochemistry. – 2005. – Vol. 73. – P. 328–335.

6. Kim K.J., Lee J.H. Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films // Solid State Commun. -2007. - Vol. 141. -P. 99–103.

7. Molenda J., Palubiak D., Marzec J. Transport and electrochemical properties of the Li $Cr_xMn_2Q_4$ ($0 \le x \le 0.5$) cathode material // J. Power Sources. – 2005. – Vol. 144. – P. 176–182.

8. Wolska E., Tovar M., Andrzejewski B., Nowicki W., Darul J., Piszora P., Knapp M. Structural and magnetic properties of the iron substituted lithium-manganese spinel oxides // Solid State Sci. – 2006. – Vol. 8. – P. 31–36.

9. Takahashi M., Yoshida T., Ichikawa A., Kitoh K., Katsukawa H., Zhang Q., Yoshio M. Effects of sodium substitution on properties of $LiMn_2O_4$ cathode for lithium ion batteries // Electrochim. Acta. – 2006. – Vol. 51. – P. 5508–5514.

ный параметр порядка ζ (стационарный вектор (η 0 -η 0 -η 0 ζ)). Обозначения НП даны по-Ковалеву [18].

Сопоставляя теоретические результаты расчета расслоения ПСТ группы Fd3m в результате фазового превращения по соответствующему критическому представлению с экспериментальными данными, полученными с помощью рентгеноструктурного анализа и нейтронографии [1, 19, 20], однозначно установим симметрию параметра порядка (ПП): ПП состоит из двух неприводимых представлений: шестикомпонентного, связанного с НП Fd3m-k₁₀(τ_3), и однокомпонентного k₁₁(τ_4) ($\tau_4 = A_{2u}$). Эти НП образуют точечную группу 192 порядка в семимерном пространстве. Трансформационные свойства ПП задаются следующими матрицами генераторов:

10. Alcántara R, Jaraba M, Lavela P, J.M. Lloris J.M., Vicente C. Pérez, Tirado J. L. Synergistic Effects of Double Substitution in $\text{LiNi}_{0.5-\mu}\text{Fe}_{y}\text{Mn}_{1.5}\text{O}_{4}$ Spinel as 5 V Cathode Materials // J. Electrochem. Soc. – 2005. – Vol. 152, Issue 1. – P. A13-A18.

11. Strobel P., Palos A.I., Anne M., Le-Cras F. Structural, magnetic and lithium insertion properties of spinel-type $Li_2Mn_3MO_8$ oxides (M = Mg, Co, Ni, Cu) // J. Mater. Chem. – 2000. – Vol.10. – P. 429-436.

12. Hayashi N.; Ikuta H.; Wakihara M. Cathode of LiMg, Mn_{2,y}O4 and LiMg, Mn_{2,y}O_{4-d} Spinel Phases for Lithium Secondary Batteies // J. Electrochem. Soc. – 1999. – Vol. 146(4). – P. 1351-1354.

13. Blasse, G. The structure of some new mixed metal oxides containing lithium (II) // J. Inorg. Nucl. Chem. – 1964. – Vol. 26. – P. 1473-1474.

14. Santhanam R., Rambabu B. Research progress in high voltage spinel $LiNi_{0.5}Mn_{1.5}O_4$ material // Journal of Power Sources. – 2010. – Vol.195. – P. 5442–5451.

15. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с пространственной группой $O_h^{\,\,7}/$ Редкол. журн. Изв. вузов. Физика. – Томск, 1982. – 25 с. – Деп. в ВИНИТИ 11.02.82, №638-82.

16. Сахненко В.П., Таланов В.М., Чечин Г.М. Возможные фазовые переходы и атомные смещения в кристаллах с пространственной группой О_в⁷. 2. Анализ механического и перестановочного представлений / редкол. журн. Изв. вузов. Физика. – Томск, 1983. – 62 с. – Деп. в ВИНИТИ 30.11.83, – №6379-83.

17. Сахненко В.П., Таланов В.М., Чечин Г.М. Теоретико-групповой анализ полного конденсата, возникающего при структурных фазовых переходах // Физика металлов и металловедение. – 1986. – Т. 62, Вып. 5. – С. 847–856.

18. Ковалев О.В. Неприводимые представления пространственных групп. – Киев: Издательство АН УССР. 1961 – 155 с.

19. Joubert J.C., Durif A. Etude de deux types d'ordre dans le spinelle $Mn_3Li_2ZnO_8//$ C. R. Acad. Sci. – 1964. – Vol. 258. – P. 4482–4485.

20. Chen J., Greenblatt M., Waszczak J. V.. Lithium insertion compounds of LiFe₅O₈, Li₂FeMn₃O₈, and Li₂ZnMn₃O₈ // Journal of Solid State Chemistry. -1986. - Vol. 64, Issue 3. - P. 240-248.