10% больных становятся инвалидами. Столь массовая заболеваемость связана прежде всего с вертикальным положением человека, при котором нагрузка на позвоночник и межпозвонковые диски значительно выше, чем у животных. Поэтому остеохондроз – болезнь человека как биологического вида. Целью нашего исследования явилось: экспериментально обосновать влияние чрескожной электронейростимулирующей терапии (ДиаДЭНС – терапии) в реабилитации больных остеохондрозом поясничного отдела позвоночника.

Опытные практики ДЭНС-терапии не раз отмечали в своих публикациях и устных выступлениях случаи неожиданного распределения ДЭНС-воздействия, при котором откликаются не только та патология, на которые жаловался пациент, но и другие — застарелые и являющиеся первопричиной неприятностей, но в данный момент себя не проявляющие. Лечению эти эффекты не мешают — просто процесс реабилитации приходит дольше, но специалистам и в этих, и в других случаях хочется большей предска-

зуемости и определенности, им хочется отслеживать течение процесса, проверять эффективность воздействия, вести его мониторинг. Вот по этим причинам мы в своей работе используем аппарат ДиаДЭНС, располагающий более широкими диагностическими и лечебными возможностями.

Для исследования нами были подобраны женщины работоспособного возраста от 40 до 46 лет. У каждой пациентки собран анамнез, определены клинические проявления остеохондроза, степень выраженности болевого синдрома. В неврологическом статусе у всех сохранялся выраженный болевой синдром, длительностью от 5-10 дней до 1 мес. В клинике отмечалось наличие триггерных зон, нарушение функции позвоночника и конечностей, то есть компрессионный синдром. В рамках эксперимента нами исследовались показатели функциональных проб гибкости позвоночника, развития мышечного корсета и сканирования позвоночника, триггерных зон, отмечались участки залипания, зоны наибольшей болезненности и чувствительности (таблица).

Показатели активности латентных триггерных зон женщин с остеохондрозом поясничного отдела позвоночника

	Ф.И.О.	Возраст,	Рост,	Вес,	Мощность ДЭНС, м/В	L ₁		L_2		L ₃		L_4		L_5	
№ п/п						правая	левая	правая	левая	правая	левая	правая	левая	правая	левая
1	C.T.A.	46	165	80	99	37	41	32	32	33	33	33	35	32	34
2	C.A.B.	46	175	95	61	46	43	44	42	43	43	41	43	43	42
3	Г.С.Н.	40	176	75	54	57	42	51	51	53	46	41	45	41	33
4	C.M.X.	40	176	75	56	47	45	41	41	44	41	41	43	41	44
5	М.Р.И.	45	179	77	70	43	37	34	34	34	32	34	35	32	34
6	Б.Р.М.	43	173	79	67	53	45	51	52	52	52	51	53	51	51
7	E.K.B.	42	165	75	54	56	44	51	52	51	47	51	46	51	42
8	П.Е.А.	40	174	70	56	60	53	57	57	52	47	52	55	52	53
9	P.C.K.	45	163	67	51	35	42	32	33	33	33	35	33	35	32
10	У.А.А.	45	171	85	61	46	43	46	45	43	43	41	45	43	45
11	P.B.B.	45	175	97	45	38	31	28	38	32	32	25	38	35	28
12	Ш.А.Н	42	173	75	35	61	68	62	48	53	52	37	45	43	59
13	Ч.В.А.	43	181	84	42	24	37	27	26	32	22	25	23	23	21
14	B.E.H.	40	167	70	31	15	24	17	28	18	17	23	14	24	18
15	С.Д.А.	42	171	73	41	24	37	24	21	27	31	24	23	21	37
M		42,9	172	78,5	54,9	42,8	42,1	39,8	40,0	40,0	38,1	36,9	38,4	37,8	38,2
δ		1,7	5,2	8,6	19,6	13,3	12,7	13,0	10,4	10,1	10,1	8,4	11,8	8,9	11,8
	m	0,46	1,39	2,31	5,24	3,54	3,39	3,47	2,77	2,7	2,7	2,23	3,16	2,39	3,16

Условные обозначения: – латентные триггерные зоны.

В результате анализа проведенной работы, можно отметить положительный результат от проводимого процесса реабилитации во всей группе пациентов. Болевой синдром и спастический синдром уменьшились до слабо выраженных и умеренно выраженных после двадцати дней воздействия, триггерные латентные зоны не наблюдались. Анализируя динамику показателей гибкости позвоночника и развития мышечного корсета больных остеохондрозом поясничного отдела позвоночника после обработки латентных триггерных зон, отметим, что прирост показателей шёл волнообразно. К концу исследования отмечено явное снижение болезненности при пальпации паравертебральных точек, триггерных точек, выраженности симптомов натяжения, увеличения объема движения. Большинство пациентов отмечали увеличение подвижности в суставах, повышение работоспособности, улучшение настроение и нормализацию ночного сна.

В ходе изучения проблемы исследования выяснилось, что полученные данные свидетельствуют о

больших возможностях динамической электроней-ростимуляции в борьбе с болевым синдромом. Планомерное внедрение в реабилитационную практику этого метода позволит расширить сферу его применения и повысить эффективность реабилитационных мероприятий при остеохондрозе позвоночника.

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ИНСЕКТОАКАРИЦИДНОЙ АКТИВНОСТИ ПРЕПАРАТОВ ПРИ ЛЕЧЕНИИ КОМПЛЕКСНЫХ ЭКЗОГЕННЫХ ИНВАЗИЙ У ЛАБОРАТОРНЫХ ЖИВОТНЫХ

Сендрякова В.Н., Букатин М.В.

Волгоградский государственный медицинский университет, Волгоград, e-mail: buspak76@mail.ru

Наиболее важным звеном в структуре медикобиологического эксперимента являются лабораторные животные. В настоящее время существенно возросли требования ученых к качеству лабораторных животных, к стандартизации их по генотипу, условиям содержания и кормления, контролируемости по микрофлоре и паразитарным организмам. Лабораторные животные подвержены различным заболеваниям, ведущее место среди которых занимают – экзогенные инвазии власоедами (Trichodectoses) - возбудители триходектоза и зудневыми клещами рода Sarcoptes возбудители саркоптоза. Зачастую саркоптоз и триходектоз встречаются в ассоциации. На Российском рынке ветеринарных препаратов, каждый год появляются все новые и новые лекарственные средства, но в доступных рекомендациях нет четких схем лечения и дозировок для борьбы с эктопаразитами грызунов. Резюмируя вышеизложенное и учитывая широкое распространение саркоптоза и триходектоза, сочли целесообразным исследовать спектр инсектицидной и акарицидной активности доступных в ветеринарных аптеках г. Волгограда препаратов. Выявлено, что наиболее представленными препаратами данного класса являются - «НеоСтомозан», «ЧистотелСпрей», «Барс», «ФронтлайнСпрей» и «ЗоопорошокПулдис». Наиболее доступными в экономическом отношении являются препараты «ЗоопорошокПулдис», «Амитразин», «Мазь Аверсектиновая», «Барс». Таким образом, в качестве «препаратов-лидеров» были выбраны акарицидные и инсектицидные препараты «Барс», «НеоСтомозан», «ЗоопорошокПулдис». На следующем этапе исследовали противопаразитарные свойства препаратов «Барс», «Пулдис» и «НеоСтомозан». Все «препараты-лидеры» рекомендуются для борьбы с паразитарными инвазиями кошек и собак, тогда как точной дозировки для мелких грызунов из доступных нам источников не обнаружено.

Экспериментальная часть проведена на 120 аутбредных половозрелых крысах-самцах массой 190-210 гр. Содержание животных и эксперименты проводились согласно международным нормам и правилам работы с позвоночными животными (Страсбург, 1999 г.). У всех животных были клинически и морфологически подтверждены следующие паразитозы: саркоптоз тела, ушей, надбровных дуг и выраженный диффузный триходектоз. В эксперименте все животные были разделены на 4 равноценные группы. Животные 1 группы подвергались обработке инсекто-акарицидным спреем «Барс», 2 группы - инсекто-акарицидными каплями «Барс», 3 группа обрабатывалась препаратом «Пулдис», 4 группа – «НеоСтомозан». Степень паразитарной инвазии у животных оценивали каждый день по оригинальной шкале «Оценки внешнего состояния лабораторных животных» в течение 6 дней, так как по заявленным в аннотации срокам, полное освобождение от эктопаразитов должно произойти на 2-3 день. При лечении комплексных эктопаразитозов грызунов по степени активности исследуемые препараты могут быть распределены в следующей последовательности: «Барс» > «Пулдис» > «НеоСтомозан», а по эффективности (скорости полного освобождения от эктопаразитов) - следующим образом: «Пулдис» > «Барс» > «НеоСтомозан».

ВЛИЯНИЕ МОНОКОМПОНЕНТНОГО РАЦИОНА НА РЕПРОДУКТИВНУЮ ФУНКЦИЮ КРЫС-САМЦОВ

Скрипка Ю.Е., Букатин М.В.

Волгоградский государственный медицинский университет, Волгоград, e-mail: buspak76@mail.ru

Неоспорим тот факт, что при нерациональном питании, а именно при несбалансированном поступлении в организм основных химических элементов (белков, жиров, углеводов, минеральных солей, витаминов и др.) могут наблюдаться разнообразные нарушения функционирования организма уже на клеточном уровне. Особенно чувствительны к неблаго-

приятным воздействиям активно делящиеся клетки, к которым, бесспорно, могут быть отнесены и генеративные клетки.

В связи с этим целью нашего исследования явилось изучение показателей сперматогенеза крыссамцов в зависимости от рациона их кормления.

Эксперименты были проведены на 40 белых половозрелых беспородных крысах – самцах массой 180-200 гр. Содержание животных и проведение экспериментов соответствовало Международной конвенции по работе с лабораторными животными (Страсбург, 1986). Крысы-самцы были разделены на две группы (по 20 особей в каждой). Первая группа получала сбалансированное питание (комбикорма + свежие овощи, творог. растительное масло). Вторая группа животных получала только очищенное зерно пшеницы. В воде животные обеих групп не ограничивались. Эксперимент продолжался в течение одного цикла сперматогенеза (60 дней). В последующем, по завершении эксперимента, для проведения морфологических исследования после эвтаназии животных (наркоз – эфирный), выделяли семенники и эпидидимисы. Из эпидидимисов извлекали гомогенат, исследовали спермиограмму. Семенники подвергали гистологической обработке. Статистическую обработку полученных данных проводили в программе Statistica 6.0 (Statsoft, CIIIA).

Установлено, что у самцов второй группы в спермиограмме наблюдалось снижение на 14% общего количества сперматозоидов при одновременном росте числа их патологических форм — на 40% (p < 0.05) — по отношению к животным первой группы. Другие структурные и функциональные показатели спермиограммы в обеих группах животных были практически идентичны и не выпадали за пределы физиологической нормы.

При макроскопической оценке структуры гонад значимых изменений их морфологии выявлено не было, в то же время коэффициент массы эпидидимисов достоверно возрастал у самцов 1 группы на 75% (p < 0.05) — в сравнении с самцами, находящимися на деприватном рационе (2-я группа). При микроскопическом исследовании срезов семенников наблюдалось снижение индекса сперматогенеза у самцов 2 группы на 57% (p < 0.05) с одновременным ростом числа канальцев со слущенным эпителием на 43% (p < 0.05) — в сравнении с животными, получавшими полноценный сбалансированный рацион (1-я группа).

Таким образом, полученные данные свидетельствуют о нарушении процесса сперматогенеза у животных находящихся на монокомпонентном рационе.

ИССЛЕДОВАНИЕ МЕТОДОМ ЗОНДОВОЙ МИКРОСКОПИИ СТРУКТУРЫ МИКРО И НАНОПОРОШКОВ ЯГЕЛЯ

Смагулова А.Ш., Аньшакова В.А.

Северо-Восточный федеральный университет имени М.К. Аммосова, УНЭПК «Биотехнологии», Якутск

Среди растительного мира Крайнего Севера ведущее место занимает ягель (род. *Cladonia*), который обладает большой калорийностью и является основным кормом для северных оленей, выдерживающих арктические зимы. Суровый климат Заполярья способствовал ягелю продуцировать уникальные биологические активные вещества, из которых наиболее изучена усниновая кислота.

Исследования структуры, состава и свойств микро и нанопорошков ягеля являются актуальными для разработки методов эффективного извлечения усниновой кислоты, обладающей антибактериальными свойствами. Усниновая кислота, извлеченная из природного экологически чистого ягеля, представляет интерес для применения в пищевой промышленности, в медицине, в косметологии.