брюшной стенке без натяжения, избежать не только ишемии слоев раны, но и увеличения внутрибрюшного и внутригрудного давления, возникновения острой сердечно-легочной недостаточности и гипоксии, снижающей репаративные процессы в ране и ведущей к раневой инфекции.

В хирургическом отделении ГУЗ «1 РКБ» МЗ УР в 2005-2007 гг. аллогерниопластика была выполнена 26 пациентам по поводу грыж различных локализаций, в возрасте — от 39 до 81 года.

По локализации грыжевые выпячивания распределились следующим образом: в 17 случаях – послеоперационные, в 8 – паховые, в 1 случае – бедренная грыжа. У 11 пациентов грыжи были рецидивными. В 14 случаях имели место гигантские размеры грыжевого выпячивания с дефектом апоневроза более 15 см.

Во всех случаях проводилась периоперационная антибиотикопрофилактика. Использовались цефалоспорины 1 поколения или защищенные аминопенициллины в терапевтических дозах. Препарат вводился внутривенно струйно за 30 минут до операции, одновременно с премедикацией. Продолжительность операции составила от 40 до 180 мин (в среднем 85 мин). Общий койко-день составил от 4 до 35 (в среднем – 16). Все больные были выписаны в удовлетворительном состоянии, с зажившей раной и снятыми швами. Инфекционных осложнений со стороны раны не отмечено ни в одном случае. У трех пациентов в раннем послеоперационном периоде при ультрасонографии выявлены клинически незначимые серомы области раны.

Таким образом, при ненатяжных методах герниопластики периоперационная антибиотикопрофилактика способствуют уменьшению количества инфекционных осложнений со стороны операционной раны.

ЭФФЕКТИВНОСТЬ НЕНАТЯЖНОЙ ГЕРНИОПЛАСТИКИ ПРИ АБДОМИНАЛЬНЫХ ГРЫЖАХ

Ларин В.В., Тарасов С.Л.

Ижевская государственная медицинская академия, Ижевск, e-mail: hvorenkoff@yandex.ru

Социальная эффективность — многофакторная интегральная категория физического, психологического, эмоционального функционирования больного в процессе лечения, которая преимущественно основана на его субъективном восприятии здоровья и социально-гигиенических условий жизни. Уровень её зависит от условий лечения пациентов. В современных экономических условиях сохраняется высоко затратный характер оказания стационарной медицинской помощи, на которую расходуется около 80 % финансовых средств ЛПУ. Не вызывает сомнения, что экономическая эффективность не может быть основной, однако ее необходимо учитывать как обеспечивающую рациональное расходование средств, выделенных на оказание медицинской помощи.

В качестве критериев социальной эффективности нами проведена оценка длительности нетрудоспособности пациентов в поликлинике и стационаре. Средняя продолжительность лечения в условиях стационара после ненатяжной герниопластики составила $15\pm1,3$ дня, после традиционных операций — $20\pm1,4$ дня. Средняя продолжительность лечения в условиях поликлиники с выдачей листка нетрудоспособности составила после ненатяжной герниопластики — $22,1\pm1,7$ дня, а после традиционных операций — $29,6\pm1,4$ дня.

В среднем после ненатяжной герниопластики продолжительность лечения составила $32,6\pm1,7$ дня, что достоверно меньше (p<0,05), чем при традиционных видах лечения – $40,8\pm5,7$ дня. Наряду с этим, в исследовании проведена оценка длительности реабилитации оперированных пациентов без больнич-

ного листа, так как это показатель, определяющий социальную эффективность в обеих группах. Длительность реабилитации пациентов в условиях поликлиники без больничного листа после ненатяжных видов операций – $25,2\pm0,6$ дня, после традиционной герниопластики – $36,9\pm1,9$ дня. Длительность нетрудоспособности по больничному листу в группе наблюдения приближается к длительности реабилитации без больничного листа. Это связано с тем, что больные после любых видов герниопластики долечиваются амбулаторно в соответствии с медико-экономическими стандартами.

В группе наблюдения число дней нетрудоспособности составило 844,2 а в группе сравнения 1011,2, т.е. на 167,0 дней, или почти на 20% меньше. Более быстрое выздоровление и возвращение больных к трудовой деятельности дает возможность рассчитать экономическую эффективность оперативного лечения за счет созданной продукции и сокращения выплат по больничным листам.

ВЛИЯНИЕ ВИРУСНЫХ АНТИГЕНОВ НА МОРФОЛОГИЮ ТИМУСА

Лыткина А.В., Годовалов А.П.

ГОУ ВПО «Пермская государственная медицинская академия им. ак. Е.А. Вагнера Росздрава», Пермь, e-mail: Solikamchik@mail.ru

При внедрении или активации вируса в организме человека могут наблюдаться различные варианты морфологических и функциональных изменений тимуса. К ним относятся: цитолитическое действие вируса (грипп, вирусный гепатит А); интеграция вируса с геномом клетки без выраженной её деструкции (вирусный гепатит В); пролиферация клеток-мишеней (парагрипп, натуральная оспа); гигантоклеточная трансформация (корь, респираторно-синцитиальная инфекция); образование телец-включений (грипп, аденовирусная инфекция, бешенство). Некоторые вирусы могут приводить к неопластической трансформации клеток человека. Так, например, вирус Эпштейн-Барра участвует в развитии лимфомы Беркитта и рака носоглотки, а Т-лимфотропный вирус І типа (HTLV-I) – в развитии Т-клеточной лимфомы. Однако чаще в клетках возникают дистрофические изменения и некроз, а в ряде случаев – своеобразные клеточные трансформации с формированием внутриклеточных включений, имеющих значение в морфологической диагностике некоторых вирусных заболеваний.

В настоящее время недостаточно изучено влияние вирусных антигенов на морфологические особенности органов иммунной системы и, в частности, тимуса.

Введение в тимус новорождённых крыс линии Вистар материала, содержащего вирус Рауса и адъювант Фрейнда, показало, что уже к 10-му дню эксперимента в околотимусных медиастинальных лимфатических узлах развивается выраженная плазмоцитарная реакция. У контрольных животных менее выраженная реакция наблюдалась лишь на 3-4-й неделе эксперимента (Белецкая и соавт., 1980). В паренхиме тимуса за весь период наблюдения авторы не выявили признаков иммунной перестройки в виде формирования лимфоидных узелков, тем более - с герминативными центрами или плазмоцитарной трансформации её клеток. Значительное скопление более или менее зрелых плазмоцитов авторы обнаружили в околотимусной соединительной ткани, а также в капсуле тимуса или в междольковой строме. В его паренхиме плазмоциты немногочисленны и встречались только непосредственно у стенки микрососудов или в их просвете. Анализируя полученные данные, авторы делают заключение: в условиях внутритимусного введения антигена плазмоклеточной трансформации не происходит, а появление небольшого количества плазмоцитов связано с гематогенным их проникновением из периферических органов иммунной системы. Даже при внутривенном введении стрептококковой протеиназы, разрушающей гематотимический барьер, в паренхиме тимуса не наблюдается образование лимфоидных узелков с герминативными центрами и без них, а также выраженной плазмоцитарной реакции.

В литературе используется термин «гиперплазия тимуса с лимбоидными фолликулами» (Kendall M.D., 1985). Изменение клеточной характеристики тимуса - самый достоверный показатель его реакции на антигенную стимуляцию (Зимин Ю.И. и соавт. 1970, Ельшанская М.П., 1972, Наумова А.Н., 1977, Во-лошин Н.А. и соавт., 1982, Ельшанская М.П., 1984). Первый признак этой реакции - увеличение числа лимфоцитов с пикнотичными ядрами, появление крупных тёмноокрашенных гранул, возникших в результате гибели тимоцитов. Уже в первые часы эксперимента при введении человеческого противокоревого гамма-глобулина в тимусе резко возрастала доля ретикулоцитов. Их количество в 2 раза превышало исходный уровень. Через три часа после введения гамма-глобулина в корковом веществе тимуса увеличивалась доля макрофагов. Они имели крупные светлые ядра с нежными глыбками хроматина, большую площадь цитоплазмы, в которой обнаруживались обломки клеточных ядер, лимфоциты и фагосомы.

РОЛЬ ВИРУСОВ В КАНЦЕРОГЕНЕЗЕ

Лыткина А.В., Годовалов А.П.

ГОУ ВПО «Пермская государственная медицинская академия им. ак. Е.А. Вагнера Росздрава», Пермь, e-mail: Solikamchik@mail.ru

В настоящее время идентифицировано около 40 онкогенов, определяющих канцерогенную активность разных вирусов. Установлена локализация клеточных онкогенов в хромосомах человека: они локализуются не только в тех хромосомах, в которых обнаружены специфические перестройки при злокачественных новообразованиях, но и в тех местах, которые нарушаются при этих перестройках. Так, при хроническом миелоидиом лейкозе один из онкогенов переносится при транслокации с 9-й хромосомы на 22-ю, а при лимфоме Беркитта ген с-тус – с 8-й на 14-ю. Смысл этих специфических перестроек заключается в том, что онкоген переносится в активные участки генома, что сопровождается активацией онкогена. В действительности процесс малигнизации значительно сложнее и требует активации нескольких онкогенов Ныне установлена локализация на хромосомах человека более 40 онкогенов, в их числе упомянутые выше онкогены с-аbi и с-тус (названия генов составлены из трёх латинских букв, взятых из названий соответствующих вирусов: abi – вирус лейкоза мышей Абельсона, тус - вирус птичьего миелоцитоматоза, src - вирус саркомы Рауса, вирус мышиной саркомы Молони и т.д.).

Важным открытием было обнаружение сходства продукта экспрессии онкогена с нормальным белковым фактором роста кровяных пластинок. Это позволило предположить, что злокачественная трансформация клеток онкогеном может осуществляться путём избыточного производства продукта, в норме стимулирующего рост. Если, как указывает И.Ф. Сейц (1984), такая закономерность будет установлена, то причину злокачественной трансформации нужно будет искать не в качественных, а в количественных изменениях механизмов, регулирующих рост на нормальной физиологической основе.

Прямая этиологическая роль вирусов в возникновении злокачественных опухолей человека доказана пока лишь в единичных случаях (это Т-клеточный лейкоз взрослых и, вероятно, африканская лимфома Беркитта). В свое время выдвигались концепции о

едином механизме канцерогенеза, осуществляемом за счет гипотетических провирусов или протовирусов. В настоящее время вирусный канцерогенез рассматривается лишь как частный случай канцерогенеза, а общим звеном в возникновении опухолей любой этиологии считается активация, превращение собственных клеточных генов (протоонкогенов) в онкогены.

Если хромосомные мутации возникают в половых клетках, то они затем обнаруживаются и во всех соматических клетках нормальных тканей, и в опухолевых клетках. При злокачественных новообразованиях, не связанных с мутациями половых клеток, нормальные ткани сохраняют нормальный кариотип, а хромосомы опухолевых клеток могут быть изменены, причем эти изменения могут быть специфическими только для данной опухоли. Впервые специфические изменения кариотипа в опухолях были обнаружены в 1960 г. в клетках хронического миелоидного лейкоза (ХМЛ) так называемой филадельфийской (Рh') хромосомы, возникновение которой обусловлено транслокацией длинного плеча хромосомы 22 на длинное плечо хромосомы 9. Это нарушение отмечают у 70-90% больных, у остальных Ph'-хромосомы не обнаруживают, причём клиническое течение болезни у них также несколько отлично, равно как и реакция на терапевтическое вмешательство. Ph'-хромосома, как и многие другие хромосомные маркёры, не связанные с мутацией в половых клетках, является приобретённым, а не наследуемым признаком.

Большая работа по идентификации канцерогенов человека проводится IARC, созывающего для этого комиссии экспертов из разных стран, которые обсуждают результаты опубликованных эпидемиологических исследований.

ДЕЙСТВИЕ АГОНИСТОВ СЕРОТОНИНОВЫХ РЕЦЕПТОРОВ НА СИНТЕЗ ДОФАМИНА В ГОЛОВНОМ МОЗГЕ КРЫС

Малахова В.В., Ананько С.Я.

Харьковский Национальный медицинский университет, Харьков, e-mail: spinfox@rambler.ru

Исследовалось влияние 8-OH-DPAT (8-гидрокси-2-дипропиламинотетралин, агониста 5-HT1A рецепторов) и DOI (2,5-диметокси-4-иодоамфетамин, агониста 5-НТ2 рецепторов) на концентрацию дофамина в регионах (черная субстанция, гиппокамп, миндалина, стриатум) головного мозга крыс с высокой (группа В) и низкой (группа Н) аудиогенной судорожной готовностью. Животные были разделены на группы по тесту Крушинского (действие звонка силой 96 дБ, 2 мин). Вещества вводили внутрижелудочково (в/ж) в 5 мкл физраствора, в концентрационном диапазоне 5-100 мМ (контроль – 5 мкл физраствора) за 30 мин до начала экспериментов. Были вычислены интегральные коэффициенты: К1 – отношение содержания дофамина к содержанию тирозина (его прекурсора) в черной субстанции; К2 – отношение содержания дофамина в структурах с дофаминергическими окончаниями к таковому в черной субстанции. Животные группы В имели более высокую скорость синтеза дофамина в сравнении с низковозбудимыми (K1 = 0.36 ± 0.04 и 0.21 ± 0.03 соответственно). 8-ОН-DPAT достоверно снижал синтез дофамина в черной субстанции головного мозга крыс группы В. Значения К1 низковозбудимых животных в этих условиях достоверно не изменялись, проявляя лишь тенденцию к снижению. Введение DOI достоверно потенцировало синтез дофамина у животных обеих групп дозозависимым образом в интервале концентраций 30-100 мМ. Величины К2 не имели существенных различий у животных групп Н и В. Ни 8-OH-DPAT, ни DOI не изменяли отношения содержания дофамина в структурах с дофаминергическими терминалями к содержанию этого медиатора в