16. Moroz T. N., Palchik N. A. Raman and infrared spectroscopic identification of phoshate-type of human pathological biomineral formations // Books of abstracts. 9th European Conference on the Karling K., Kar

Moroz I., Ragozin A., Salikhov D., Belikova G., Puchkov V., Kagi H. Micro-Raman spectra of ugrandite garnet // Spectrochim. Acta. Part A. – 2009. – Vol. 73. – P. 436-439.
I8. Zelentsov E.L., Moroz T.N., Kolmogorov Yu.P., Tolmachev V.E. et al. The elemental SRXRF analysis and mineral composition of human salivary stones // Nuclear Instruments and Methods in Physics Research. A. – 2001. – Vol. 470. – P. 417-421.

ПОРОДЫ КИМБЕРЛИТ-ОРЕНДИТ-ЛАМПРОИТОВОЙ СЕРИИ В КАРБОНАТИТОВОМ комплексе контозеро Пуха В.В., Петровский М.Н.

МГТУ, ЕТФ, ГИ КНЦ РАН, Апатиты, e-mail: puha.vyacheslav@mail.ru

Контозёрский карбонатитовый комплекс расположен на территории Кольского полуострова, на удалении 60 км в северо-восточном направлении от Ловозёрского плутона. Контозёрская структура представляет собой палеозойскую палеовулканическую кальдеру обрушения диаметром 8 км, в которой сохранилась осадочно-вулканогенная толща мощностью около 2000 м (рис. 1) [6]. В разрезе этой толщи преобладают пирокластические породы и лавы сильно недосыщенных кремнеземом нефелин- и мелилитсодержащих пород. В верхней части разреза толщи распространены пирокластические и эффузивные карбонатиты. В центральной части палеокальдеры расположена трубка взрыва, которая примыкает с севера к жерловому аппарату. Трубка взрыва сложена щелочными пикритовыми порфиритами, оливинфлогопитовыми пикритами и их автобрекчиями, а также карбонатитами жерловой фации. Впервые о присутствии здесь кимберлитов упоминает А.С. Попов, ссылаясь на химический состав пород [5]. Во всех последующих публикациях среди пород, слагающих трубку взрыва Контозёрского комплекса кимберлиты не упоминались.

Нами проведено петрохимическое изучение пород, представленных в трубке взрыва. Использовались химические анализы пород по фондовому керновому материалу из скважины 7 (разрез на рис. 2), а также образцов пород, отобранных с поверхности в районе расположения трубки взрыва в ходе полевых работ 2006 г. Кроме того, использовались фондовые данные химических анализов пород [6]. Точки отбора анализировавшихся образцов и мест расположения скважин указаны на рис. 1.

Рис. 1. Схематическая геологическая карта Контозёрской палеокальдеры (составлена по материалам Л.Г. Сапрыкиной). Вулканогенные и осадочно-вулканогенные палеозойские образования (1-4): контозёрской серии (1-3): 1 – карбонатно-терригенная (карбонатитовая) толща, 2 – вулканогенная (мелилититовая) толща, 3 – терригенно-вулканогенная (авгититовая) толща; ловозёрской серии – 4. Интрузивные и субвулканические образования палеозоя: 5 – поле развития щелочных пикритовых порфиритов, слюдистых пикритов, карбонатитов и суюзнать образованы плетовоны пострановые система и правода порядников порядников порядников проблетках паронатика и противное и камафоритов трубки взрыва; 6 – нефезиновые сисниты, пракаскиты, малиныты; 7 – якупирангиты, мельтейгиты, ийолиты 8 – клинопироксениты, габбропироксениты. Архейские образования центральнокольского комплекса (9): биотитовые и гранатовые гнейсы, гнейсо-граниты, мигматиты. Метасоматиты цеолит-анкеритовые, альбит-цеолит-анкеритовые, доломит- анкеритовые – 10. Жерловые фации – 11. Разрывные нарушения установленные по геологическим и геофизическим данным, а также предполагаемые – 12. Точки отбора образцов и расположения скважин – 13

Данные химических анализов приведены в табл. 1 в виде мас.% оксидов и миналов, полученных при петрохимическом пересчёте по алгоритму CIPWD [2].

Расположение точек отбора анализировавшихся образцов керна скважины №7 показано на рис. 2.

Согласно петрохимическому пересчёту содержание карбонатов (сс + mc) в породах трубки взрыва колеблется в интервале 12-55 мас. %. Анализ 11, в котором карбонаты практически отсутствуют, соответствует образцу Кнт-26/06 щелочного пикрита, отобранному не из поля развития пород трубки взрыва; однако петрохимическая характеристика этой породы близка к породам трубки. Анализ 3 соответствует образцу 678 к автобрекчии карбонатизированного слюдистого пикрита с содержанием карбонатной составляющей 93 мас.%. Соотношение карбонатной, алюмосиликатной и оксидно-фосфатной частей в мас.% изображены на тройной диаграмме Дубровского М.И. [3].

Большинство пород соответствует оливин-нормативной группе по степени насыщенности кремнезёмом и щелочному ряду. Некоторые породы характеризуются преобладанием К над Al, что выражается в отсутствии Са и Na нормативных алюмосиликатов в составе.

1. Химический состав пород трубки взрыва Контозёрского карбонатитового комплекса, выраженный в оксидах и миналах CIPWD, мас.%

	1	2	3	4	5	6	7	8	9	10
Номер образца	750к	749к	678к	714к	-	740к	-	-	-	1773к
Номер скважины, интервал глуби-	скв.7,	скв.7,	скв.7,	скв.7,	скв.7,	скв.7,	скв.7,	скв.7,	скв.7,	скв.53,
ны, м	30,6-30,8	33,1-35,2	75,1-76,1	115,4-116,4	164,6	166,4-166,8	200,0	201,8	284,5	15,0
Порода	кп.	сл. п.	сл. п.	КП.	0.	сл. п.	К.	0.	Л.	-
SiO ₂ , mac.%	19,00	28,97	0,20	20,00	24,18	21,30	35,14	33,82	31,87	28,48
TiO	2,51	3,94	0,05	2,81	2,54	1,82	3,12	1,03	4,37	3,40
Al ₂ Õ ₂	2,50	2,53	0,10	2,50	2,55	2,25	3,38	2,26	2,55	4,54
Fe ₂ O ₂	9,27	9,99	1,04	6,09	10,84	13,43	3,07	4,32	3,01	7,46
FeO	1,68	5,82	0,24	5,17	3,95	4,00	1,99	3,65	2,55	4,18
MnO	0,54	0,25	0,04	0,44	0,45	0,78	0,22	0,45	0,57	0,28
MgO	12,24	20,20	0,61	13,46	20,27	13,56	25,97	26,89	24,55	12,12
CaO	28,76	11,05	52,12	18,12	13,43	21,80	11,49	11,59	12,57	18,69
Na ₂ O	0,38	0,83	0,10	3,08	0,52	0,64	0,10	0,35	0,42	2,38
K,Õ	1,67	1,76	0,02	0,92	1,99	1,26	2,97	2,08	2,99	1,19
P ₂ O ₅	2,07	0,81	1,56	0,88	3,51	3,05	0,52	0,85	1,24	0,31
CO,	15,93	9,83	40,95	26,39	9,66	13,10	7,16	7,35	7,48	15,29
S	0,35	0,27	0,60	0,45	0,86	0,55	0,01	0,36	0,58	
F	0,25	0,21	0,08	0,37	0,38	0,30	0,40	0,48	0,37	
SrO	0,76	0,14	2,10	0,38		0,32				
H,O ⁻					1,24		2,02	1,67	2,95	
H ₂ O ⁺					3,49		2,39	2,83	1,88	
Сумма	97,91	96,60	99,81	101,06	99,86		99,95	99,98	99,95	98,32
ap	4,90	1,92	3,69	2,08	8,31	7,22	1,23	2,01	2,94	3,46
pr	0,66	0,51	0,47	0,84	1,61	1,03	0,02	0,67	1,09	0,04
fr	0,32	0,36	0,02	0,68	0,46	0,34	0,77	0,91	0,65	0,24
сс	36,23	17,69	91,73	29,98	15,96	29,79	16,28	16,72	17,01	14,62
mc		3,93	1,18	25,31	5,06					
ilm		3,78		5,34			1,73	1,96	3,39	
ru	2,51	1,95	0,05		2,54	1,82	2,21		2,58	1,31
mt	5,91	12,81		0,74	11,08	13,43	4,45	4,98	2,80	5,36
hm	5,20		1,04		2,48	3,91				1,16
or		10,40		5,44	11,76	7,45	17,55	12,29	13,93	11,88
ab		3,22		7,74	2,04	4,56	0,85	0,05		5,58
an							0,004			
ac		3,35		16,13	2,08	0,75		2,57	3,13	0,75
di						5,51	4,61	2,13	4,27	1,19
hd								0,06		
en		15,51		1,32	2,64	1,89	6,47	9,93	1,20	6,23
fs				1,69				0,33		
fo	17,53		0,07	1,44	29,30	20,55	39,29	39,27	40,61	43,74
fa				2,03				1,46		
lc	7,51									
ne	1,74		0,22							
kp	0,16		0,07							
ns			0,10							
dsk									1,44	
gh	0,18									
ak	14,85									
per			0,002							
Группа	VII-kp	II-ol	IX-per-wu	II-ol	II-ol	II-ol	II-ol	II-ol	II-ol	II-ol
Ряд	В	Д'	Д'	Д'	Д'	Д'	В	Д'	Д"	Д'

Продолжение табл. 1

	11	12	13	14	15	16	17	18	19	20
Номер образца	Кнт-26/06	Кнт-34/06	Кнт-35/06	Кнт-35-1/06	Кнт-39/06	Кнт-39-1/06	Кнт-40/06	Кнт-41/06	Кнт-3/06	BF-208
Порода	Щ. П.	T.	0.	0.	T.	Л.	0.	T.	Т.	0.
SiO ₂ , мас.%	42,76	23,96	32,69	37,70	15,49	29,48	34,15	22,26	27,82	34,97
TiO,	2,02	2,86	1,50	3,81	2,38	5,98	4,82	4,29	4,75	1,31
Al ₂ Õ ₂	6,87	2,56	3,39	3,20	1,78	2,17	4,15	4,40	2,90	3,26
Fe ₂ O ₂	5,60	5,23	2,60	3,10	3,46	4,04	2,50	6,84	8,98	5,11
FeO	9,12	7,41	2,40	2,16	6,24	3,24	2,04	4,77	3,48	1,21
MnO	0,17	0,37	0,18	0,24	0,26	0,23	0,18	0,33	0,27	0,47
MgO	18,21	13,24	20,48	24,60	8,99	23,80	19,66	17,05	11,15	27,79
CaO	10,68	21,33	16,81	10,70	26,66	12,09	12,21	15,56	14,69	10,40
Na,O	0,75	1,13	0,94	0,85	0,48	0,49	1,73	1,61	3,12	0,76
K,Õ	1,23	2,44	2,02	3,10	1,61	2,66	2,94	3,18	3,01	2,01
P ₂ O ₅	0,43	1,25	0,39	1,66	2,27	1,80	0,29	0,74	0,22	1,46
CO,	0,18	14,72	10,72	5,23	23,87	6,33	8,38	14,83	15,95	6,43
S	0,03	0,56	0,38	0,10	0,56	1,07	0,01	0,26	0,18	0,02
F	0,19	0,65	0,99	0,36	0,70	1,25	1,12	0,53	0,92	0,18
H ₂ O ⁻	0,23	0,78	2,47	1,56	1,53	2,47	2,77	2,06	1,33	3,90
H,O+	1,47	1,47	1,95	1,53	3,69	3,18	3,01	1,38	1,18	3,95
Сумма	99,97	99,96	99,91	99,90	99,97	100,28	99,96	100,09	99,95	99,28
ap	1,02	2,96	0,92	3,93	5,37	4,26	0,69	1,75	0,52	3,46
pr	0,06	1,05	0,71	0,19	1,05	2,00	0,02	0,49	0,34	0,04
fr	0,35	1,22	2,00	0,59	1,23	2,40	2,28	1,02	1,87	0,24
сс	0,41	33,48	24,38	11,89	41,21	14,40	18,26	24,90	23,36	14,62
mc					11,02		0,67	7,44	10,88	
ilm	3,84	5,43	2,59	3,97	4,52	2,15	4,66	3,65	6,60	
ru			0,14	1,72		4,85	2,36	2,37	1,28	1,31
mt	8,12	3,36	2,99	1,32	3,31	4,03		9,92	1,37	5,36
hm										1,16
or	7,27	8,20	11,94	17,48	9,51	11,85	17,37		15,84	11,88

ADVANCES IN CURRENT NATURAL SCIENCES №7, 2011

52

МАТЕРИАЛЫ КОНФЕРЕНЦИИ

								0	кончание	таол. 1
ab	6,35		6,19		0,19		4,98			5,58
an	11,75									
ac		8,42	1,55	6,33	3,41	3,65	7,23		23,25	0,75
di	24,55	0,72	4,84	6,36		0,64				1,19
hd	4,26	0,12								
en	3,58		8,81	6,50	8,38	3,62	3,29		2,10	6,23
fs	0,71				4,48					
fo	21,30	22,87	27,99	36,31	0,62	38,79	31,45	23,55	8,91	43,74
fa	4,67	4,96			0,37					
lc		4,53						14,73		
ne								2,67		
dsk		0,17		0,33		1,49			0,75	
dsn							0,50	3,02		
Группа	II-ol	IV-lc	II-ol	II-ol	II-ol	II-ol	II-ol	IV-lc	II-ol	II-ol
Ряд	B	Д"	Д'	Д"	Д'	Д"	Д'	Д'	Д"	Д'

Примечание. К.-п. – карбонатит-пикрит, сл. п. – слюдистый пикрит, л. – лампроит, о. – орендит, к. – кимберлит, щ. п. – щелочной пикрит, т. – туфобрекчия. ар – апатит, рг – пирит, fr – флюорит, сс – кальцит, mc – магнезит, ilm – ильменит, ги – рутил, mt – магнетит, hm – гематит, ог – ортоклаз, аb – альбит, ап – анортит, ас – акмит, di – диопсид, hd – геденбергит, еп – энстатит, fs – ферросилит, fo – форстерит, fa – фаялит, lc – лейцит, ne – нефелин, kp – калиофиллит, ns – натр-силикат, dsk – дисиликат калия, dsn – дисиликат натрия, gh – геленит, ak – акерманит, per – периклаз. II-оl – оливин-нормативная группа, IV-lc – лейцит-нормативная группа, VII-kp – калиофиллит-нормативная группа, IX-рег-wu – периклаз-вюстит-нормативная группа. В – ряд нормальной щёлочности, Д' – щелочной ряд (K+Na>Al) и Д" – щелочной ряд (K > Al).

Рис. 2. Схематический разрез скважины №7, пройденной по породам трубки взрыва (составлен по материалам Л.Г. Сапрыкиной). Цифры слева от разреза соответствуют значениям глубин встречи пород в метрах. Цифры справа от разреза соответствуют позиции соответствующих анализов пород в табл. 1

Для петрохимический диагностики пород использовались диаграммы уровня родов и индивидов [2], представленные на рис. 4, 5. Большая часть фигуративных точек в левой части диаграммы (рис. 5) попадают в поле кимберлитов. При этом практически все указанные породы соответствуют субщелочному и щелочному ряду, что характерно для орендитов (кимберлитов второго рода). 9, 14 и 19 анализы соответствуют оливиновым лампроитам.

Для более достоверной диагностики были использованы критерии из [7]: диаграмма в координатах MgO/FeOt-K,O/Al,O₃ (рис. 6) и минералогические критерии, приведённые ниже. Диаграмма на рис. 6 представляет собой дискриминационную диаграмму, для разделения потенциально алмазоносных, убогоалмазоносных и неалмазоносных типов щелочных ультраосновных пород. Для сравнения, на эту же диаграмму нанесены точки составов кимберлитов Терского берега Кольского региона.

Можно видеть, что часть пород из нижней части скважины №7, а именно 7, 8, 9 анализы, а также некоторые породы с поверхности (13, 14, 16, 17, 20 анализы) попадают в поля орендитов-лампроитов – потенциально алмазоносных пород. Прочие анализы соответствуют типичным так называемым альпикритам – породам, иногда называемым кимберлитоподобными, которые часто слагают дайки и небольшие штоки вблизи карбонатитовых массивов и не являются алмазоносными. Кимберлиты Терского берега

Рис. 3. Диаграмма, отражающая соотношение миналов: al-si – алюмосиликатных миналов, тс+сс – карбонатных миналов, ох+ар – оксидно-фосфатных миналов и соотношение магнезита и кальцита (K_m). Фигуративные точки здесь и в дальнейшем соответствуют образцам пород из табл. 1

УСПЕХИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ №7, 2011

Рис. 4. Классификационная диаграмма уровня родов и индивидов для оливиннормативных вулканических пород (n < 66,6) Fe-Mg-отряда. n – уклон щёлочности, n = Na×100/(Na + K)

Рис. 5. Классификационная диаграмма уровня родов и индивидов для оливиннормативных гипогидробарических пород (n<33,3; K>Al) (ортопироксеновые лампроиты) Fe-Mg-отряда

попадают в поле кимпикритов – пород иногда слабоалмазоносных, переходных между кимберлитами и альпикритами.

Рассмотрим минералогические критерии выделения алмазоносных кимберлитов из работы [7]. В этой работе приводятся такие данные: оливин (фенокристаллы) алмазоносных кимберлитов должен по составу отвечать форстериту с долей фаялитовой компоненты не более 90-93%, должен обладать высоким содержанием Ni – в среднем 0,35% и низким содержанием Mn – в среднем 0,10%; флогопит (из мезостазиса и микровкрапленников) должен характеризоваться очень высоким показателем магнезиальности Mg# = Mg×100/(Mg + Fe) = 85-96 и низким содержанием TiO₂ – ниже 2%. В табл. 2 и 3 приводятся данные составов неизменённых оливинов из вкрапленников и флогопитов пород трубки взрыва Контозёрского карбонатитового комплекса.

2. Составы неизменённых оливинов из вкрапленников пород трубки взрыва

		Оливин	ы по дан	ным [1]		Оливины из кимберлитов (данные М.Н. Петровского				
Скважина/глубина, м	7/94	7/94	7/94	7/240	7/240	7/200-1	7/200-2	7/200-3	7/201,8-1	7/201,8-1
Fo	89,63	88,64	88,51	93,24	96,18	95,67	95,27	95,38	94,15	93,53
NiO	0,39	0,38	0,38	0,03	0,03	0,16	0,15	0,16	0,46	0,45
MnO	0,14	0,11	0,12	0,48	0,50	0,16	0,18	0,15	0,44	0,25

Как видно из табл. 2 оливины из глубоких частей скважины №7 обладают высокой магнезиальностью, но небольшим содержанием NiO. Полностью удовлетворют критериям выделения алмазоносных кимберли-

тов лишь оливины с глубины 201,8 м. Из табл. 4 видно, что флогопиты мезостазиса пород трубки взрыва с глубин 94 и 240 м, также полностью удовлетворют критериям выделения алмазоносных кимберлитов.

54

3. Составы флогопитов из мезостазиса пород трубки взрыва

	Флогопиты из основной массы пикритов по данным [1]								
	K-7/94	K-7/94 K-7/240 K-7/240							
Mg#	92,31	84,91	90,90	92,69					
TiO ₂	0,76	2,84	0,82	0,46					

 $\Pi\,p$ и м е ч а н и е . Зелёным цветом отмечены значения, удовлетворяющие требованиям критериев выделения алмазоносных кимберлитов [7].

MgO/FeO. 6 13 5 4

Рис. 6. Диаграмма MgO/FeOt–K2O/Al2O3 для различных типов щелочных ультраосновных пород. I – породы кимберлит-орендитлампроитовой серии Контозёрского карбонатитового комплекса, II – кимберлиты Терского берега [4]

Проведённые исследования свидетельствуют, что часть пород трубки взрыва Контозёрского карбонатитового комплекса представлены породами кимберлит-орендит-лампроитовой серии.

Авторы настоящего доклада принимали участие в полевых работах 2008 г. на территории распространения пород жерловой фации и трубки взрыва Контозёрской структуры, организованных Геологическим Институтом КНЦ РАН. Целью работ являлось определение ореолов рассеивания минералов-спутников алмаза для

выявления потенциальной алмазоносности Контозёрской палеокальдеры. Последующие специальные минералогические исследования, направленные на поиск алмазов в материале отобранном в ходе полевых работ 2008 г., не дали положительного результата.

Список литературы 1. Арзамасцев А.А., Арзамасцева Л.В., Беляцкий Б.В. Щелоч-ной магматизм инициального этапа палеозойской тектоно-магматической активизации северо-востока фенноскандии: геохимические особенности и петрологические следствия. – Петрология, 1998. Т. 6, №3. – С. 316-336.

 Дубровский М.И. Комплексная классификация магматиче-горных пород. – Апатиты: Издательство Кольского научного ских горных пород. – Ап центра РАН, 2002. – 234 с.

3. Дубровский М.И. Систематика пород семейства щелочных пикритов // Бюл. моск. о-ва испытателей природы. отд. геол. 2004. – Т. 79, Вып. 1. – С. 77-80.

4. Калинкин М.М., Арзамасцев А.А., Поляков И.В. Кимберлиты и родственные породы Кольского региона // Петрология. Т. 1, № 2. – С. 205-214.

Т. 1, № 2. – С. 205-214. 5. Попов А.С. К вопросу о палеозойском вулканизме Кольско-го полуострова // Доклады Академии наук СССР. – 1967. – Том 174, № 1. – С. 173-176. 6. Пятенко И.К., Сапрыкина Л.Г. Петрологические особенно-блиятенко И.К., Сапрыкина Л.Г. Петрологические особенно-в получеские и собенно-ком собенно-собенно-собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-ком собенно-со

о. пятенко и.к., Сапрыкина л.г. Петрологические осооенно-сти щелочных базальтоидов и вулканических карбонатитов Русской платформы. Петрология и петрохимия рудоносных магматических формаций. – М.: Наука, 1981. – С. 233-255. 7. Фролов А.А., Лапин А.В., Толстов А.В., Зинчук Н.Н., Бе-лов С.В., Бурмистров А.А. Карбонатиты и кимберлиты (взаимоотно-ивация мидеограция простос). М.: Иол. НИА Приораз. 2005.

шения, минерагения, прогноз). - М.: Изд. НИА-Природа, 2005.

РУДНЫЕ МИНЕРАЛЫ В РАЗЛИЧНЫХ ФАЦИЯХ ДОННЫХ ОТЛОЖЕНИЙ ОЗЁРНЫХ КОТЛОВИН НА ПОБЕРЕЖЬЕ БЕЛОГО МОРЯ

¹Толстобров Д.С., ²Колька В.В., ^{1,2}Корсакова О.П.

ІМГТУ, ЕТФ, Кафедра ГиПИ; 2Геологический Институт КНЦ РАН, Anamumы, e-mail: tolst-dm-ser@inbox.ru

Изучение донных отложений в котловинах малых озер, расположенных на побережье Белого моря, проводятся в течение последних 15 лет (Колька и др., 2005; Corner et. al., 2001; Korsakova, Kolka., 2005; Snyder, Korsun, Forman, 1996) для последующих реконструкций перемещения береговой линии моря в голоцене. В результате проведенных исследований были установлены несколько разновидностей фаций осадков донных отложений. Их формирование связано с процессом гляциоизостатического поднятия Балтийского щита. Из-за гляциоизостатического поднятия на протяжении голоцена береговая линия Белого моря испытывала в целом регрессивное перемещение. По мере этого в котловинах первичного рельефа побережья менялись условия осадконакопления и формировались различные фаций донных отложений. При их геохимическом и минералогическом изучении были установлены факты аутигенного минералообразования, которые требуют своего объяснения.

Район исследования и фактический материал. Для геохимического и минералогического изучения были выбраны фации донных отложений озера, расположенного в 20 км на запад от посёлка Чупа на абсолютной высоте 81,5 м н.у.м. (рис. 1). Здесь вскрыт самый полный по набору фаций разрез.

Рис. 1 Расположение озера Безымянного (СНИ-4) с абсолютной отметкой высоты 81,5 м н.у.м. (район пос. Чупа)