ных операционных систем, где критичным является время выполнения процессов.

Список литературы

1. Таненбаум Э. Современные операционные системы. – СПб.: Питер, 2004. – 1040 с. 2. Основы теории вычислительных систем / под ред. С.А. Майо-

рова. – М.: Высшая школа, 1978. – 408 с.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СЕМИНАРСКОГО ЗАНЯТИЯ «РАСЧЁТ ЕСТЕСТВЕННОГО ОСВЕЩЕНИЯ» ПО КУРСУ «БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ»

Мальцев А.В., Григорьева Т.Ю., Евстигнеева Н.А.

Московский автомобильно-дорожный государственный технический университет (МАДИ), Москва, e-mail: marqizz@yandex.ru

В соответствии с действующей методикой, изложенной в Своде правил по проектированию и строительству СП 23-102-2003, разработана компьютерная программа (КП), позволяющая вычислить и сопоставить с нормируемым значением коэффициент естественной освещённости (КЕО) в расчётных точках помещения жилых и общественных зданий при боковом освещении с учётом городской застройки. Основными исходными данными, подлежащими предварительному определению с использованием плана и поперечного разреза исследуемого помещения, а также специальных графиков для расчёта геометрического КЕО, являются:

- число лучей, проходящих через поперечный разрез светового проёма от неба и противостоящего здания (ПСЗ) в расчётную точку (РТ);
- число лучей, проходящих от неба и ПСЗ через световой проём на плане помещения в РТ;
- угол, под которым видна середина участка неба из РТ на поперечном разрезе помещения.

Остальные необходимые для проведения вычислений сведения включены в справочный блок программы. КП выполнена на базе табличного процессора Microsoft Excel и доступна даже начинающим пользователям персональных компьютеров. Её применение позволит облегчить выполнение трудоёмких расчётов.

Разработанная программа обсуждена на заседании методического совета кафедры техносферной безопасности МАДИ. Рекомендована к внедрению в учебный процесс по курсу «Безопасность жизнедеятельности» в качестве программного обеспечения семинарского занятия «Расчёт естественного освещения». Может быть также полезна студентам при разработке обязательного раздела «Производственная и экологическая безопасность» выпускных квалификационных работ.

СПОСОБ ДЫМОГЕНЕРАЦИИ В СРЕДЕ ИНЕРТНОГО ГАЗА С ИНДУКТИВНЫМ ПОДВОДОМ ЭНЕРГИИ

Мальцева О.В., Картавый А.Г., Шахов С.В.

Воронежская государственная технологическая академия, Воронеж, e-mail: Potapov0412@rambler.ru

Разработан высокоэффективный способ дымогенерации в среде инертного газа с индуктивным подводом энергии (рисунок), который осуществляют следующим образом. Сначала осуществляют генерацию азота, который получают путем баромембранного разделения воздуха на полупроницаемых мембранах под давлением 0,5-4 МПа, а затем происходит им обогащение воздуха, идущего на дымогенерацию путем пиролиза древесных опилок. Процесс дымогенерации осуществляют в замкнутом пространстве, ограниченном для доступа кислорода путем фильтрации через слой опилок смеси воздуха, обогащенного азотом при постоянном совместном перемешивании опилок и дисперсных электропроводящих частиц. При этом подвод энергии к древесным опилкам осуществляют от смешанных с ними дисперсных электропроводящих частиц, выделяющих теплоту в результате их индукционного нагрева под действием переменного электромагнитного поля.

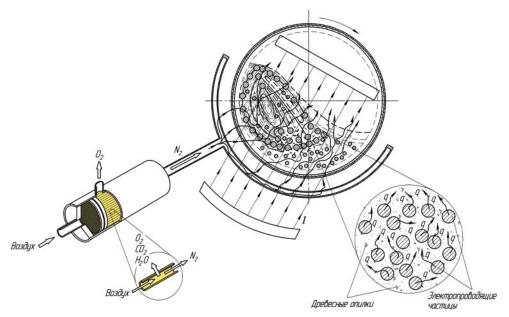


Схема осуществления способа дымогенерации в среде инертного газа с индуктивным подводом энергии

Предлагаемый способ имеет следующие преимущества:

- использование при дымогенерации путем пиролиза древесных опилок в качестве инертного газа азота, полученного путем баромембранного разделения воздуха на полупроницаемых мембранах под давлением 0,5-4 МПа позволяет получить необходимую смесь из воздуха с повышенным содержанием азота, для ее использования при дымогенерации;

осуществление пиролиза древесных опилок в замкнутом пространстве, ограниченном для доступа кислорода позволяет создать высокую температуру дымогенерации благодаря исключению опасности возгорания древесных опилок в результате использования смеси инертного газа с воздухом с пониженным содержанием кислорода, что обеспечивает высокую скорость образования дыма;

- постоянное совместное перемешивание опилок и дисперсных электропроводящих частиц и фильтрации через них смеси воздуха и инертного газа, при подводе энергии к древесным опилкам от смешанных с ними дисперсных электропроводящих частиц, выделяющих теплоту в результате их индукционного нагрева под действием переменного электромагнитного поля позволяет увеличить плотность дыма вследствие равномерности, объемного и адресного энергоподвода к частицам древесных опилок.

ЭТИЛИРОВАНИЕ ТОЛУОЛА ЭТАНОЛОМ НА ВЫСОКОКРЕМНЕЗЕМНОМ ЦЕОЛИТЕ, МОДИФИЦИРОВАННОМ ЦИНКОМ

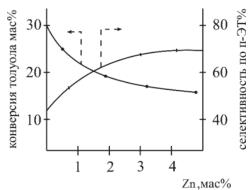
Мамедов Э.С., Ахмедов Э.И., Гахраманов Т.О. Бакинский государственный университет, Баку, e-mail: mivlgu@mail.ru

Продукты этилирования толуола п- и м-этилтолуолы (ЭТ) применяют для получения метилстиролов. Применение полиметилстиролов открывает новые пути утилизации толуола, что позволяет заменить им дефицитный бензол в нефтехимическом синтезе [1, 2]. Традиционные кислотные катализаторы типа (AICl₃·HCl), используемые в алкилировании имеют существенные недостатки (коррозия аппаратуры, большой расход катализатора). В их присуствии протекают вторичные реакции, снижающие селективность производства, что требует дополнительных затрат на очистку получаемых продуктов. Кроме того,

образуется большое количество сточных вод и отходов производства, загрязняющих окружающую среду.

Новым перспективным способом получения п-ЭТ является этилирование толуола на ВК-цеолитах типа ZSM-5. Модифицирование цеолитов ZSM-5 различными элементами (В, Р, Мg, Si, La и.т.д.) вызывает повышение их пара-селективности [3-5]. В связи с этим разработка пара-селективных катализаторов для процесса этилирования толуола представляет большой интерес.

Цель настоящей работы — изучение влияния модифицирования ВК-цеолита типа ультрасила цинком на его физико-химические и каталитические свойства в реакции этилирования толуола.


Для исследования использовали высококремнеземный цеолит типа ультрасила с мольным отношением ${\rm SiO_2/Al_2O_3}=61$. Методика приготовления катализаторов описана в работе [5]. Кислотные свойства модифицированных цеолитов изучали методом термодесорбции аммиака по методике, описанной в работе [6]. Опыты проводили на установке проточного типа со стационарным слоем катализатора объемом 4 см³ в реакторе идеального вытеснения при атмосферном давлении в присутствии водорода в интервате температур 300-400 °C, объемной скорости подачи сырья 1 ч⁻¹ при мольном отношении ${\rm C_7H_8:C_2H_5OH:H_2}$, равном 2:1:2.

В табл. 1 приведены данные по активности и селективности Н-ультрасила в реакции этилирования толуола. Температура реакции не оказывала влияния на конверсию спирта, которая составляла 92-100%, конверсия толуола возрастала с увеличением температуры с 24,5 до 39,3 мас%.

1. Состав продуктов алкилирования толуола этанолом на Н-форме ультрасила

t,°C	Конверсия, %		Селективность по продуктам в катализате, %								Селективность
	Толуола	Этанола	Бензола	ЭБ	п-ЭТ	м-ЭТ	о-ЭТ	C_{5+} алифат. углев.	Ксилолы	Прочие АРУ	
300	24,5	92,3	1,2	2,4	31,7	38,5	1,2	11,5	5,5	1,8	47,3
350	31,8	100	3,8	2,2	32,8	41,6	2,5	7,3	6,3	2,0	42,3
400	39,3	100	4,2	2,7	32,5	41,5	3,8	4,8	2,4	5,1	40,1

Помимо толуола и ЭТ в углеводородной части катализата обнаружены алифатические углеводороды C_{5+} , бензол, этилбензол, ксилолы, следы триметилбензолов и других ароматических углеводородов. В газообразных продуктах наблюдали предельные и непредельные углеводороды $(C_1 - C_4)$. При низких температурах процесс в значительной степени осложнялся образованием алифатических углеводородов C_{5+} , при более высоких — увеличением выхода побочных ароматических углеводородов и снижением селективности по 1-ЭТ.

Зависимость конверсии толуола и селективности по n-ЭT от концентрации цинка

Как видно из рисунка и табл. 2 введение цинка в состав Н-ультрасила приводит к существенному изменению каталитических и физико-химических свойств катализаторов: снижается их активность в реакциях алкилирования и диспропорционирования толуола и возрастает селективность образования п-ЭТ.

Введение цинка в количестве 2,0-10,0 мас% в состав ультрасила способствовало повышению его селективности по п-ЭТ с 42,3 до 67,5 мас%. Проявление пара-селективности цинксодержащих ультрасилов может быть обусловлено уменьшением силы бренстедовских и льюсовских кислотных центров в цеолите [3, 4], а также изменением размеров каналов структуры, следовательно, и адсорбционно-десорбционных и диффузионных характеристик катализаторов. Действительно, модифицирование сопровождается химическим взаимодействием модификатора с цеолитом, что приводит к воздействию модификатора на доступность каналов структуры цеолитных катализаторов. Это подтверждается уменьшением сорбционной емкости образцов с увеличением содержания в их составе пинка.

Изменение активности и пара-селективности ультрасила при его модифицировании вызвано также изменением концентрации и силы кислотных центров (табл. 2).

Модифицирование Н-ультрасила Zn приводит к смещению высокотемпературного пика в область более низких температур и снижению концентрации кислотных центров обеих форм десорбции аммиака.