виде матрицы. Далее осуществляется непосредственная реализация функций виртуального измерительного прибора.

Примером может служить комплекс виртуальных измерительных приборов (КВИП).

Программное обеспечение ПК для КВИП представляет собой стандартное Windows-приложение, названное Virtual Device, где имеется возможность настройки параметров цифрового регистратора, а также виртуальные приборы: вольтметр, амперметр, часто-

Приложение Virtual Device организовано с учётом постановки учебного процесса.

В программе имеется возможность сохранять измеренные данные в текстовый файл для его дальнейшего использования существующими приложениями (MathCAD, Matlab).

КВИП можно использовать в учебном процессе. В одном случае цели таковы: ознакомление с современными средствами измерения; формирование представлений о возможностях ПК в области электрических измерений; рассмотрение теории дискретизации аналоговых сигналов. В другом -приобретение навыков использования виртуальных средств измерения для определения показателей качества электрической энергии; получение достоверной и наглядной информацию о показателях качества электрической энергии.

КВИП позволяет также проводить различные научные исследования на основе анализа экспериментальных данных.

Виртуальный прибор работает в режиме квазиреального времени «через период», т.е. когда в течение одного периода сигналов промышленной частоты (0,02 с) происходит измерение их мгновенных значений в течение же следующего периода - их регистрация, преобразование Фурье и отображение в виде векторных диаграмм. При условии предварительной записи результатов измерений в файл возможно в режиме of line изображение векторных диаграмм на каждом периоде.

Основной особенностью данного виртуального прибора является отсутствие соответствующего ему реального аналога.

Программное обеспечение

Типовая архитектура ПО ИИС, которая отражает современное представление об измерительном программирований, имеет обычно три уровня: уровень метасистемы, системный уровень, уровень рабочих процедур.

Пакет LabVIEW – графическая альтернатива обычному программированию - предназначен для создания измерительных систем и представляет собой программные средства, которые требуются при работе в области мониторинга, испытаний и измерений.

Программирование, управляемое потоком данных, позволяет избавится от линейной архитектуры языков, основанных на тексте. Так как порядок выполнения программы в этом случае определяется потоком данных между узлами, а не последовательными строками текста, можно создавать программы, которые имеют многократные маршруты данных и одновременно выполнимые операции. Независимые маршруты данных осуществляются параллельно.

Одни классы могут наследовать структуру одного или более других классов, называемых суперклассами; подклассы определяют наследуемую от классов спецификацию более подробно. Наследование дает возможность, используя уже созданные объекты, расширять свойства старых объектов путем изменения внутренних методов.

Йедавно на пути развития технологии программирования приборов появилась новая многообещающая идея. Она называется IVI (Interchangeable Virtual Instruments) – взаимозаменяемые виртуальные инструменты. Основная идея такова. Все приборы одного класса имеют большую, общую для всех приборов группу функций. Например, все цифровые мультиметры (DMM) измеряют постоянное и переменное напряжение, сопротивление, а также выполняют другие функции. Если эти функции выделить в IVI Class Driver для класса DMM Class, то часть программы, отвечающая за управление цифровыми мультиметрам и, не будет зависеть от конкретного прибора и его драйвера. Следует отметить высокое качество и надежность приборных драйверов VXI plug@play, что не связано с концепцией классов драйверов IVI Class Driver, а реализуется другими средствами.

Современные программные системы не мыслимы без удаленного доступа. Трудно себе представить ответственную систему, не имеющую в конечном счете выхода в Интернет.

Основные области применения таких систем – экспериментальные научные измерения и исследования реализуются в виде универсальных (функциональноориентированных) приборов в виртуальном исполнении (осциллографы, анализаторы, генераторы, и др.).

Заключение. Применение ВП позволяет:

- оптимизировать процесс проведения сложных измерений;
- исключить рутинные операции ручной установки режимов измерений;
- упростить технологию поиска неисправностей радиоэлектронной аппаратуры;
- автоматизировать процесс метрологических ис-
- обеспечить документирование и хранение данных измерений.

- Ных измерений.

 Список литературы

 1. Атамалян Э.Г. Приборы и методы измерения электрических величин: учеб. пособие для втузов. М.: Дрофа, 2005. 415 с.

 2. Дьяченко К.П., Зорин Д.П., Новицкий П.В., Новопашенный Г.Н., Островский Л.А., Пресняков П.Д., Спектор С.А., Фетисов М.М., Шрамков Е.Г. Электрические измерения. Средства и методы измерений (общий курс): учеб. пособие для втузов / под ред. Е.Г. Шрамкова. М.: Высшая школа, 1972.

 3. Зализный Д.И., Широков О.Г. Использование виртуальных средств измерения при обучении // Электроэнергия: от получения и распределения до эффективного использования: сб. матер, всеросс. науч.-техн. конф. Томск: ТТІУ, 2008. С. 8-9.

 4. Раннев Г.Г., Тарасенко А.П. Методы и средства измерений: учебник для вузов. 2-е изд., стереотип. М.: Издательский центр «Академия», 2004. 336 с.

 5. Раннев Г.Г. Информационно-измерительная техника и элек-

- Ланнев Г.Г. Информационно-измерительная техника и электроника: учебник для вузов. М.: Издательский центр «Академия»,
- 2006 512 c.
 6. Pat. 7305312 U. S., Int. CI G 01 R 13/00. Metod and apparatus for recording a real time signal / Hamre et al.; Filed 10.01.2006; www.
- patft.uspto.gov. 7. http://www.kudrinbi.ru. 8. http://www.electronshik.ru.

ПРИМЕНЯЕМЫЕ МЕРЫ ПО СНИЖЕНИЮ ЗВУКОВОГО ДАВЛЕНИЯ В ПРОИЗВОДСТВЕННЫХ ПОМЕШЕНИЯХ

Конов А.В

Муромский институт Владимирского государственного университета, Муром, e-mail: mivlgu@mail.ru

Технологическое оборудование, вентиляционные системы, кондиционеры, пневмо- и гидроагрегаты и другое оборудование может производить определенный шум при своем функционировании. С физиологической точки зрения шум - это всякий звук, который неблагоприятно воспринимается человеком.

Нормирование шумовых параметров для безопасной жизнедеятельности на рабочих местах определяется ГОСТ 12.1.003-83 и СĤ 2.2.4/2.1.8.562-96. Кроме того, те же санитарные нормы регламентируют и допустимость шумов в жилых помещениях и в общественных зданиях.

В установках по вентилированию (кондиционированию) передача шума от источника во внешнюю среду происходит тремя способами:

- передача шума по воздуху: любая конструкция вентиляционной установки, воздухо-приемник, труба, стенка и т.д. может быть источником шума. Этот шум может распространяться как во внутреннем, так и во внешнем пространстве и непосредственно воспринимается людьми;
- шум гидравлических систем: передается через жидкости, текущие по трубопроводам. В этом случае шум может возникать вследствие образования полостей в насосе, вследствие значительных изменений диаметра трубопровода, действием клапанов и других факторов. Такой шум, также может распространяться на довольно большие расстояния, вызывая неудобства;
- шум, который распространяется через сооружения. Источником такого шума является вибрация, передаваемая от агрегата или от вентиляционной системы в целом к строительным конструкциям здания. Вибрационные волны могут передаваться на значительные расстояния по строительным конструкциям, а затем «проявляются» в виде шума, передаваемого по воздуху.

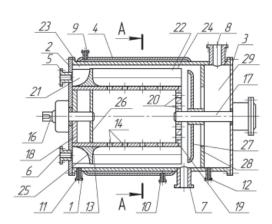
Методы защиты от шума в системах вентиляции и кондиционирования основываются на двух видах операций, применимых одновременно или последовательно:

- меры, относящиеся к самому источнику шума;
- меры, относящиеся к каналам, передачи шума.

Уменьшение шума в источнике возникновения происходит за счет замены ударных механизмов безударными, возвратно-поступательных движений вращательными, совершенствования кинематических схем, применения пластмассовых деталей, использования глушителей из звукопоглащающего материала,

за счет виброизоляции шумных узлов и частей агрегатов, статической и динамической балансировки и прочего.

Ко второму типу мер относятся в основном меры с использованием звукопоглощающих и звукоизолирующих материалов. Звукопоглощение основано на поглощении звуковой энергии волн, распространяющихся по воздуху звукопоглощающими материалами, которые трансформируют её в тепловую. А метод звукоизоляции основан на отражении звуковой волны, падающей на ограждение (экран)


Эти меры всегда предусматриваются на проектной стадии и применяются при монтаже вентиляционных систем (установок). В этом случае удается достичь наилучших результатов при наименьших затратах. Меры, принимаемые после завершения монтажа, не столь эффективны, и в любом случае затраты на такие работы значительно возрастают.

РАЗРАБОТКА ЦИЛИНДРИЧЕСКОГО РОТАПИОННО-ПЛЕНОЧНОГО АППАРАТА

Константинов В.Е., Алтайулы С.

Воронежская государственная технологическая академия, Воронеж, e-mail: D84616736@yandex.ru

Для эффективного удаления влаги из фосфолипидной эмульсии предложен цилиндрический ротационно-пленочный аппарат (рисунок), в котором с помощью лопастей продукт равномерно распределяется по внутренней поверхности корпуса, при этом формируется равномерный слой продукта и обеспечивается его поступательное перемещение по внутренней поверхности корпуса аппарата.

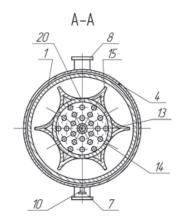


Рисунок. Цилиндрический ротационно-пленочный аппарат: 1 — цилиндрический корпус, 2, 3 крышки, 4 — греющая рубашка, 5 и 6 патрубки для ввода исходного продукта, 7 — патрубок для вывода готового продукта, 8 — патрубок для присоединения к вакуумной системе, 9 и 10 патрубки для подвода пара и отвода конденсата из греющей рубашки, 11 и 12 патрубки для слива остаточной фосфатидной эмульсии и остаточного парожирового конденсата от аппарата, 13 — перфорированный ротор, 14, 20 — отверстия, 15 — лопасти, 16, 17 — валы, 18 и 19 — диски. Отверстиями, 21 и 22 — винтообразный и прямолинейный участки, 23 и 24 — зазоры, 25, 26 — перегородки, 27 — сепарационный отбойник тарельчатого типа, 28 — неподвижно сепарационное кольцо, 29 — сепарационная камера

Преимущества цилиндрического ротационно-пленочного аппарата заключаются в том, что:

- выполнение лопастей ротора с винтообразным и прямолинейным участками, отделенными друг от друга по высоте лопасти перегородкой, нижняя часть которой имеет плавный скругленный переход к цилиндрической части ротора позволяет сформировать равномерный слой продукта и обеспечить его поступательное и стабильное перемещение по внутренней поверхности корпуса аппарата, что обеспечивает эффективное удаление из него пара.

 установка внутри полости ротора на границе перехода от винтообразного участка лопастей ротора к прямолинейному участку лопастей перегородки, которая также разделяет полости перфорированной и сплошной частей ротора обеспечивает беспрепятственное удаление из зоны обработки продукта паровой фазы и из аппарата;

– расположение патрубков для ввода исходного продукта в районе действия лопастей ротора в верхней и нижней части крышки, размещенной на левом торце цилиндрического корпуса позволяет равномерно вводить продукт в аппарат иравномерно его распределять его по внутренней поверхности корпуса аппарата, что ведет к снижению динамического воздействия на привод барабана.

 установка за сепарационным отбойником дополнительного неподвижного сепарационного кольца позволяет повысить эффективность и надежность выделения из парожировой смеси водяного пара и готового продукта.