ИЗУЧЕНИЕ ЭФФЕКТИВНОСТИ ОЧИСТКИ МОДЕЛЬНЫХ СТОКОВ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ

Хлебникова Т.Д., Хамидуллина И.В., Кирсанова Т.В., Бычкова О.В.

Уфимский государственный нефтяной технический университет, Уфа, e-mail: khlebnikovat@mail.ru

Предлагаемый способ очистки был осуществлен в лабораторных условиях на модельных растворах. В качестве разбавленного раствора использовали водопроводную воду с добавлением 2 ммоль/л (272 мг/л) хлорида цинка, 2700 мг/л сульфата натрия и 1 мл/л глицерина. В качестве концентрированного раство-

ра был приготовлен на основе водопроводной воды раствор хлорида цинка с концентрацией 8,8 ммоль/л (1200 мг/л). В концентрированный раствор был добавлен бактерицид — формальдегид в количестве 10 мг/л. Расход разбавленного раствора составил 1 л/час, а концентрированного раствора — 0,7 л/час.

Эксперимент показал, что изменение значения рН в емкости смешения находится в корреляционной зависимости от включения и выключения насоса на подачу разбавленного раствора (дискретная подача). Сигнал сульфидного электрода (Us) медленно изменяется и устанавливается на уровне (— 445 mV), что означает практически отсутствие сульфида.

Эффективность очистки сточных вод от тяжелых металлов предлагаемым способом составила 921 г/($м^3$ -час) при входной концентрации тяжелых металлов 2 ммоль/л.

Показатели эффективности очистки модельных сточных вод	Показатели	эффективности	очистки	модельных	сточных вод
--	------------	---------------	---------	-----------	-------------

Модельная сточная вода					Dd d armyr	Степень
Загрязнитель	Разбавленный раствор	Концентриро- ванный раствор	Очищен- ная СВ ¹	Норма сброса ²	Эффектив- ность очистки, Е	очист- ки, U
	[мг/л]	[мг/л]	[мг/л]	[мг/л]	[г/(м³*час)]	[%]
Цинк	272	1200	1,1	2	921	99,9
Цинк ³	0	1200	1,1	2	839	99,9
Сульфат	2700	0	932	600	2100	64
Сульфид	0	0	0,1	1	-	-
Бактерицид	0	10	6	-	-	-

- 1 раствор отфильтрован (0,45 µm);
- 2 норма сброса в канализацию (Уфа, Россия);
- 3 вариант с отсутствием ионов цинка в разбавленном растворе.

Таким образом, предлагаемый способ позволяет обеспечить высокую эффектив-

ность очистки сточных вод независимо от их состава.

Экология и рациональное природопользование

ЛЕГКИЕ ГОРОДА

Масленникова Л.А., Божко Е.П., Бондаренко Д.А., Галактионова В.В.

Владивостокский государственный медицинский университет, Владивосток, e-mail: lgsedova@mail.ru

Дышать чистым воздухом не только приятно, но и необходимо для нормального функционирования нашего организма, а фабриками кислорода являются зеленые растения. Исследовали газовую продуктивность растений и обеспечение кислородом людей, проживающих в городе Владивостоке. Мы предложили методику для изучения этого вопроса, состоящую из четырех этапов. Первый этап – описали видовой состав фитоценоза двух изучаемых районов. Растительность разделили на семь групп: деревья более пяти метров высотой, до пяти метров высотой, до пяти метров высотой, до двух метров, кустарники более 2,5 метров, менее 2 метров, менее 1 метра, травяной покров. Второй этап – вычислили количество кислорода, произведен-