Биологические науки

К ВОПРОСУ ОБ АНОМАЛЬНЫХ СВОЙСТВАХ ТАЛОЙ ВОДЫ (ЧАСТЬ ВТОРАЯ)

Машнин С.В., МашнинТ.С. *ООО «НПП ЭКОЮРУС-І»*

Тяжелая талая вода и тяжелая вода: при увлажнении тяжелой талой водой (табл. 1) и тяжелой водой (табл. 2) наблюдались вариации значений параметров роста растений $(t_{\rm H},\ V_{\rm p})$.

За суточный цикл наблюдались 2 минимума и 2 максимума значений $t_{\rm u}$, $V_{\rm p}$, при этом промежуток времени между min и min (max и max) составлял 10-12 ч (как и в случае с природной водой).

Наблюдаемая картина сохранялась при различных временах хранения талой воды — тяжелой талой и тяжелой (24-720 ч и более). При этом минимуму значений th соответствовал максимум значений $V_{\rm p}$ и наоборот.

Таблица 1 Редис «Красный великан», партия 01121, $T=23~^{\circ}\mathrm{C}$

Номер партии	1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A
$t_{_{\mathrm{VB}}}$, ч	22	24	2	4	6	8	10	12	14	16	18	20	22
<i>t</i> _н , ч	15*	16	29	31**	17	20	19	17*	20	21	32**	19	18
$V_{\rm p},{\rm MM/q}$	0,45**	0,34	0,12	0,11*	0,26	0,29	0,35	0,61**	0,45	0,18	0,10*	0,30	0,35
N ,%	98	95	70	72	95	85	85	98	97	85	65	95	97

^{* —} минимум значений $t_{_{\rm H}},\,V_{_{\rm p}},\,$ ** — максимум значений $t_{_{\rm H}},\,V_{_{\rm p}},\,$ время московское.

Таблица 2 Редис «Красный великан», партия 01121, T = 23 °C

Номер партии	1A	2A	3A	4A	5A	6A	7A	8A	9A	10A	11A	12A	13A
<i>t</i> _{ув} , ч	22	24	2	4	6	8	10	12	14	16	18	20	22
<i>t</i> _н , ч	16	15*	29	36**	20	19	20	21	16*	24	36**	24	19
$V_{\rm p}$, мм/ч	0,40	0,45**	0,20	0,15*	0,20	0,31	0,30	0,30	0,55**	0,31	0,13*	0,21	0,37
N ,%	96	98	60	45	98	85	90	95	98	95	65	75	94

^{* –} минимум значений $t_{_{\rm H}}, V_{_{\rm D}},$ ** – максимум значений $t_{_{\rm H}}, V_{_{\rm D}},$ время московское.

Обращает внимание факт значительной амплитуды в значениях параметров роста растений: при увлажнении тяжелой водой значения времени начала и скорости роста имеют большую амплитуду, чем при увлажнении тяжелой талой водой. При увлажнении семян талой водой (75 % легкой талой и 25 % тяжелой талой водой), а также водой с составом: 75 % легкой талой и 25 % тяжелой водой, наблюдались аналогичные вариации значений параметров роста

растений, что и при увлажнении тяжелой талой и тяжелой водой.

Природная вода имеет неоднородный изотопный состав: примерно 99,732 % легкого изотопа водорода и 0,268 % тяжелых молекул воды. Содержание тяжелых изотопов в воде непостоянно и в зависимости от региона, климатических условий и характера местности варьирует от 0,243 % в зоне Арктики до 0,268 % в океанической. Замерзание, таяние (также как

испарение и конденсация) приводят к изменению концентрации тяжелых изотопов водорода и кислорода — минимум в легкой талой воде, максимум в тяжелой воде, как и в природной. Наблюдаемые вариации значений параметров роста растений связаны с наличием в тяжелой талой, талой (состав из легкой талой и тяжелой талой) и в природной воде тяжелых тяжелых молекул водорода и кислорода. Для легкой талой воды вариации значений параметров роста отсутствовали, она стабильна во времени, параметры роста растений достаточно высоки, что объясняется пониженной концентрацией тяжелых молекул воды, веществ и газов. Ва-

риации значений параметров роста растений определяются, по-видимому, взаимодействием семян,увлажненных водой с тяжелыми молекулами воды с космическими лучами (КЛ), продуктами взаимодействия КЛ с атмосферой (протоны, тепловые нейтроны и др.). Известны вариации интенсивности КЛ, которые обусловлены широтным эффектом, вращением Земли (звездно-суточные вариации), модулированием магнитным полем Земли и др. Вариации интенсивности КЛ обусловливают и наблюдаемые вариации параметров роста растений. Реакции КЛ с водой в клетке растений и вне ее требуют отдельного подробного рассмотрения.

Педагогические науки

ФИЗИЧЕСКОЕ ВОСПИТАНИЕ В УСЛОВИЯХ НЕБЛАГОПРИЯТНОЙ ОКРУЖАЮЩЕЙ СРЕДЫ С УЧЕТОМ РЕГИОНАЛЬНЫХ ОСОБЕННОСТЕЙ

Хаирова Т.Н., Дижонова Л.Б., Слепова Л.Н., Дижонов С.Л., Татарников М.К.

Волжский политехнический институт (филиал) ГОУ ВПО «Волгоградский государственный технический университет»

Многолетние наблюдения за состоянием здоровья и физическим развитием студентов, как первого, так и старших курсов, показали, что с каждым годом растет число учащихся с ослабленным здоровьем. Из года в год при комплектовании учебных групп для занятий физическим воспитанием в среднем 20-25 % студентов оказываются в специальной медицинской группе. Значительно количество занимающихся с нарушением осанки, заболеваниями верхних дыхательных путей аллергического характера, что, по мнению многих специалистов, свидетельствует об отрицательном влиянии неблагоприятной экологической среды. За период регулярных наблюдений количество таких студентов составляет примерно 25-30 %.

Изменение экологической обстановки, связанное с загрязнением окружающей среды химическими предприятиями и автотранспортом, увеличением стрессовых ситуаций, различных

катаклизмов, оказывает отрицательное влияние на здоровье и уровень физической подготовленности подрастающего поколения. Занятия физическими упражнениями в таких неблагоприятных экологических условиях не дают ожидаемого оздоровительного эффекта, а в некоторых случаях отрицательно сказываются на состоянии здоровья занимающихся. Это требует более глубокого научного обоснования организации физического воспитания, активного поиска наиболее эффективных средств и методов снижения влияния отрицательных экологических факторов во время занятий физическими упражнениями. Увеличение или снижение двигательной активности как фактора улучшения здоровья в экологически неблагоприятных условиях требует повышенного внимания к методике применения средств и методов физической культуры.

Для улучшения положения в деле сохранения и укрепления здоровья необходимо строить работу по физическому воспитанию с учетом субъективных и объективных экологических факторов определенного региона.

Региональная модель физического воспитания — это модель, учитывающая, прежде всего, условия жизнедеятельности (климатические, социальные, экологические, биологические и др.), а также показатели здоровья и физической подготовленности определённого контингента населения региона. Использование физкультурно-оздоровительных технологий, с учетом региональных моделей физического воспитания, повышение объема и разнообразия форм двигательной активности, должно способствовать развитию, укреплению и восстановлению здоровья. Эти технологии должны иметь педа-