ИССЛЕДОВАНИЕ СТАЙ И СТАЙНЫХ ПОСТРОЕНИЙ ЖУРАВЛЕЙ В ОСЕННИЙ ПЕРИОД 2009 г. НА ТЕРРИТОРИИ ИВАНОВСКОЙ ОБЛАСТИ

Моржов А.В., Рябов А.В. ГОУ ВПО «Шуйский государственный педагогический университет» Шуя, Ивановская обл., Россия

Исследования проводились в середине сентября 2009 г. в южной части Ивановской области на территории Клязьминского заказника в рамках Всероссийских учетов журавлей.

Целью исследований являлось изучение стайных построений журавлей, а также особенности их перемещений вблизи антропогенных ландшафтов.

Для достижения поставленной цели были поставлены следующие задачи:

- 1) Определение количества особей в стаях.
- 2) Характерные формы стайных построений и их соотношение.
- 3) Особенности перелетов птиц в данной местности.

Исследования проводились по методике А.В. Молодовского (Молодовский, 2001). За стаю нами принималась группа из 3-х и более особей, объединенных единством поведения. Погодные условия во время наблюдения следующие: ветер 2-3м/с, облачность - 90%, без осадков.

При наблюдении основное направление перелета наблюдалось с северо-запада на юговосток. Начало перелета – 18 ч. 10 мин, конец перелета – 19 ч 20 мин. Общее количество учтенных птиц составило 517 особей, объединенных в 26 стай. Диапазон высот полета составлял от 25 до 50 метров. Средняя скорость полета составляла 11 м/с. Среднее количество особей в стае – 23 (x_{cp} =22,54.) Минимальное количество особей в стае – 3. Максимальное количество особей в стае – 298.

Стайные построения были представлены следующими: продольные ленты (70%), угол (25%), клин (5%). Также у стай в форме продольных лент (линий), имелись микроуглы в количестве от одного до четырех. Время стайного перестроения обычно составляло 40 секунд. Пространственное распределение особей в стае по высоте достигало в максимуме 4-х метров. По длине интервал между особями составлял в среднем около 3-х метров.

По мере приближения к населенному пункту или отдельно стоящим людям стаи обходили их, отклоняясь преимущественно в северную сторону. Угол отклонения составлял до 15 градусов.

Выводы:

- 1) Общее количество птиц составило 517 особей в 26 стаях.
- 2) Характерные стайные построения: фронтальная линия (70%), угол (25%), клин (5%).
- 3) Основные направления перелетов с северо-запада на юго-восток, интервал высоты полета 25-50 м, угол отклонения от населенных пунктов составил примерно 15 градусов.

ИСПОЛЬЗОВАНИЕ КОЛЛЕКЦИОННОГО ФОНДА ДЛЯ ПОЛУЧЕНИЯ ГИБРИДОВ TRITICUM AESTIVUM L. ПРИ РАЗЛИЧНЫХ СКРЕЩИВАНИЯХ

Наумова Е., Боме Н.А., Боме А.Я. ГОУ ВПО Тюменский государственный университет, Тюмень, Россия ГНЦ РФ Всероссийский научно-исследовательский институт растениеводства им. Н.И. Вавилова, Санкт-Петербург, Россия

Получение достаточного количества гибридных семян при проведении искусственных скрещиваний продолжает оставаться одной из основных задач метода гибридизации. Успех гибридизации определяется правильно подобранными формами для скрещиваний и объемом гибридного материала. На количество сформировавшихся семян после опыления кастрированных цветков оказывает существенное влияние целый ряд факторов (погодные условия, время опыления, жизнеспособность пыльцы, генотипические особенности родительских форм и др.).

В условиях юга Тюменской области завязываемость гибридных семян колеблется в довольно широких пределах. Так у озимой ржи при получении гибридов в системе диаллельных скрещиваний между 6 сортами этот показатель изменялся от 0 до 50,8% при среднем значении за 3 года 25,7% [1].

По 28 гибридным комбинациям гороха было опылено 398 цветков, получено 202 гибридных боба и 724 гибридных семян при средней величине завязываемости 45,9%, что в целом свидетельствует о достаточно высокой эффективности применения метода гибридизации [2]. В тоже время анализ отдельных комбинаций скрещиваний вновь обращает внимание на значительное варьирование показателя от 20 до 100%.

Для повышения результативности гибридизации применяют биологически активные вещества, среди которых определенный интерес представляет парааминобензойная

кислота (ПАБК). Положительное действие ПАБК показано при проведении внутривидовых скрещиваний ярового рапса. Опрыскивание кастрированных цветков 0,05% раствором ПАБК обеспечило увеличение завязываемости гибридных стручков на 19,04% по сравнению с контролем (цветки, обработанные дистиллированной водой) [3].

В нашем исследовании, проведенном в 2009 г. на биостанции «Озеро Кучак» Тюменского государственного университета, были получены внутривидовые гибриды мягкой яровой пшеницы. В качестве родительских форм взяты сорта, районированные в Тюменской области СКЭНТ 1, СКЭНТ 3, Лютесценс 70, а также сорта иностранной селекции Hybrid (к-47641, Мексика) и Сага (к-64381, Мексика). Все 3 сорта отечественной селекции относились к разновидности lutescens (Alef.) Mansf., сорта мексиканской селекции - к разновидности - eritrospermum Korn. Сорта подбирались по результатам комплексной оценки коллекционного фонда Тюменского опорного пункта ВНИИ растениеводства им. Н.И. Вавилова. Кастрацию и опыление материнских растений проводили по методике, изложенной В.Ф. Дорофеевым в соавторстве [4].

Гибридные семена были получены в 10 комбинациях скрешиваний. Всего прокастрировано 994 цветков. Количество гибридных семян составило 186 шт. при среднем значении завязываемости 18,7%. Максимальное количество гибридных семян (66 шт.) получено в комбинации Hybrid x СКЭНТ 1 (завязываемость 35,9%). Трудности в получении гибридного семенного материала наблюдались в следующих комбинациях: Hybrid x СКЭТ 3, Hybrid x Лютесценс 70 и Hybrid x Cara. Количество гибридных семян по отношению к кастрированным цветкам составило в этих комбинациях 2,6, 4,9 и 5,3% соответственно. Следует отметить, что в качестве отцовской формы во всех случаях был взят Hybrid.

Низкие показатели завязываемости семян мы объясняем как биологическими особенностями сортов, взятых в качестве исходного материала, так и метеорологическими условиями 2009 г., который можно характеризовать как засушливый, особенно в начальный период вегетации растений, с неравномерным распределением осадков.

СПИСОК ЛИТЕРАТУРЫ

1. Трофимова Ю.Б. Завязываемость гибридных зерен озимой ржи в диаллельных скрещиваниях в различные по метеоусловиям годы и оценка гибридов F_1 / Ю.Б. Трофимова,

- Н.А. Боме // Вестник Тюменского государственного университета. №5, 2005. С. 230-234.
- 2. Ушаков В.Н. Проявление гетерозиса у гибридов гороха F_1 и F_2 , полученных в диаллельных скрещиваниях в северной лесостепи Тюменской области /В.Н. Ушаков, Н.А. Боме // Вестник Тюменского государственного университета. №3, 2004. С. 95-100.
- 3. Салдырбаева Е.И. Применение парааминобензойной кислоты при получении внутривидовых гибридов ярового рапса в условиях северной лесостепи Тюменской области / Е.И. Салдырбаева, Н.В. Горбатова // Успехи современного естествознания. М.: Академия естествознания. №1, 2004. С. 67.
- 4. Дорофеев В.Ф. Цветение, опыление и гибридизация растений / В.Ф. Дорофеев, Ю.П. Лаптев, Н.М. Чекалин. М.: Агропромиздат, 1990. 140 с.

ИЗМЕНЕНИЕ МОРФОЛОГИЧЕСКИХ И РЕПРОДУКТИВНЫХ ПОКАЗАТЕЛЕЙ ОДУВАНЧИКА РОГОНОСНОГО (*TARAXACUM CERATOPHORUM*) В УСЛОВИЯХ ГОРОДСКОЙ СРЕДЫ (НА ПРИМЕРЕ Г. ЯКУТСКА)

Новикова В.К., Шадрина Е.Г. Якутский государственный университет им. М.К. Амосова Якутск, Россия

В настоящее время, когда антропогенное воздействие на природные процессы стало одним из наиболее значимых экологических факторов, нет необходимости доказывать актуальность исследований, направленных на поиск критериев и методов оценки техногенной нагрузки на экосистемы. Особенно затруднена оценка качества урбанизированной среды, насыщенной разнообразными источниками загрязнения атмосферы. Природные компоненты урбосреды, и в первую очередь растения как объекты фитомониторинга, могут использоваться для получения информации как о недавнем и кратковременном, так и о длительном воздействии загрязняющих веществ.

Цель наших исследований — оценить размерные характеристики и семенную продуктивность одуванчика рогоносного в биотопах с разной антропогенной нагрузкой на территории г. Якутска. Собрано 150 растений одуванчика рогоносного из 15 точек на территории г. Якутска, в каждой точке собрано по 10 растений. Для морфологической характеристики использовали следующие параметры: длина и ширина листовой пластинки, число листьев в прикорневой розетке, высота цве-