ческими параметрами. Хорошая корреляционная связь прослеживается с окружностью грудной клетки (r=0,63) и продольным диаметром грудной клетки (r=0,51); умеренная — с поперечным диаметром грудной клетки (r=0,47), с 1-м (r=0,66), 4-м (r=0,40) и 5-м (r=0,34) измерениями ромба Машкова, с подгрудинным углом (r=0,30).

Задняя длина грудной клетки не формирует сильных корреляционных связей. Средняя по силе связь прослеживается с поперечным диаметром грудной клетки (r=0,56); умеренная — с 1-м (r=0,27), 2-м (r=0,45), 3-м (r=0,43) и 5-м (r=0,29) измерениями ромба Машкова.

Измерения ромба Машкова формируют следующие корреляционные связи. 1-я сторона связана хорошей корреляцией с 4-м измерением данного ромба (r=0,67); умеренной — с окружностью грудной клетки (r=0,47), продольным (r=0,32) и поперечным (r=0,42) диаметрами, с передней (r=0,45) и задней (r=0,27) длинами грудной клетки. 2-я сторона ромба связана сильной корреляцией с 3-м измерением (r=0,88) и умеренной с задней длиной грудной клетки (r=0,45). 3-е измерение образует тесную корреляцию со 2-м измерением ромба Машкова (r=0,88); с остальными изученными параметрами выявлены слабые корреляции. 4-е измерение тесно связано со 2-м измерением (r=0,88); средне — с 1-м (r=0,67); умеренно — с окружностью грудной клетки (r=0,33), с поперечным диаметром (r=0,28), передней длинной грудной клетки (r=0,40). 5-е измерение ромба умеренно связано с окружностью грудной клетки (r=0,48), поперечным (r=0,43) и продольным (r=0,36) диаметрами, передней (r=0,34) и задней (r=0,29) длиной грудной клетки, 1-м измерением ромба Машкова (r=0,42).

Межакромиальный и межскапулярный углы связаны с изученными параметрами грудной клетки только слабыми корреляциями.

Переднезадний верхнегрудинный диаметр хорошо коррелирует с переднезадним нижнегрудинным диаметром; умеренно — с продольным диаметром грудной клетки (r=0,27). С остальными параметрами прослеживаются слабые связи.

Переднезадний среднегрудинный диаметр хорошо коррелирует с переднезадним нижнегрудинным диаметром (r=0,86). С остальными параметрами грудной клетки выявлены только слабые корреляционные связи.

Переднезадний нижнегрудинный диаметр связан средней по силе корреляцией с переднезадним верхне- и среднегрудинными диаметрами (r=0,73 и r=0,86). С остальными изученными параметрами выявлены только слабые корреляции.

Подгрудинный угол связан средней по силе корреляцией с окружностью (r=0,59) и поперечным диаметром (r=0,67) грудной клетки; умеренной — с продольным диаметром (r=0,42) и передней длиной (r=0,30) грудной клетки.

Морфометрические параметры грудной клетки не формируют тесных связей с изученными антропометрическими параметрами. Хорошая корреляция связывает окружностью грудной клетки с шириной плеч (r=0,56), окружностями (r=0,58), радиусами (r=0,62) и диаметрами (r=0,61) конечностей. Поперечный диаметр грудной клетки связан умеренной корреляцией с шириной плеч (r=0,41). С другими антропометрическими параметрами изученные параметры грудной клетки связаны только слабыми корреляционными связями.

ВЛИЯНИЕ РГПУ-147 НА ПОВЕДЕНИЕ ЖИВОТНЫХ В УСЛОВИЯХ ЭКСПЕРИМЕНТАЛЬНОГО ГИПЕРТИРЕОЗА

Прилучный С.В.¹, Самотруева М.А.¹, Тюренков И.Н.², Моисеенкова Л.Н.¹, Магомедов М.М.¹, Игейсинов Н.Г.¹

¹ГОУ ВПО «Астраханская государственная медицинская академия», ²ГОУ ВПО «Волгоградский государственный медицинский университет»

Целью данной работы являлось изучение влияния нового производного γ -аминомасляной кислоты (ГАМК) под шифром РГПУ-147 на поведение крыс в тесте «Открытое поле» в условиях экспериментального гипертиреоза.

Исследование выполнялось на 24 крысах линии Wistar средней массой 250 г. Животные были распределены на 3 группы по 8 животных в каждой: контроль № 1 (эквиобъем 0,9% раствора натрия хлорида), контроль № 2 (модель гипертиреоза — трийодтиронин, 50 мкг/кг, внутрижелудочно, 14 дней), опытная группа (модель гипертиреоза +РГПУ-147, 50 мг/кг, внутрибрюшинно, 14 дней). Результаты были обработаны статистически с применением t-критерия Стьюдента.

Анализируя поведение животных с экспериментальным гипертиреозом, мы отметили угнетение локомоторной и ориентировочно-исследовательской активности, что выражалось в снижении количества посещенных сегментов (p>0,05), «заглядываний в норки» (p<0,05) и числа «стоек» (p<0,05). На фоне введения РГПУ-147 у крыс с патологией наблюдалось

увеличение горизонтальной (p<0,01), вертикальной (p<0,05) двигательной, а также исследовательской активности (p<0,05) по сравнению с контрольной группой животных с моделью гипертиреоза.

Таким образом, результаты проведенного исследования показывают, что новое производное ГАМК под шифром РГПУ-147 нивелирует нарушения поведенческих реакций у животных с экспериментальным гипертиреозом, что создает предпосылки для дальнейшего доклинического изучения данного фармакологического вещества.

РАЗРАБОТКА УСЛОВНО-ВЕРОЯТНОСТНЫХ МОДЕЛЕЙ ПАТТЕРНОВ ВАРИАТИВНОСТИ МЕЖПУЛЬСОВЫХ ИНТЕРВАЛОВ ДЛЯ ОПТИМИЗАЦИИ ДИАГНОСТИКИ УСПЕШНОСТИ И ЭФФЕКТИВНОСТИ ПРОВЕДЕННОГО БИОУПРАВЛЯЕМОГО ИГРОВОГО ТРЕНИНГА

Пятакович Ф.А., Якунченко Т.И.

Белгородский государственный университет. Белгород. Россия.

Актуальность темы. Один из самых простых, но эффективных алгоритмов, используемых для оценки функционального состояния организма человека, является статистический подход к оценке вариабельности сердечного ритма [2, 4].

Данный алгоритм имеет существенные нововведения в определении промежутка времени, в течение которого происходит запись ЭКГ. В 1996 г. Европейское кардиологическое общество и Североамериканское общество стимуляции и электрофизиологии ввели жесткие стандарты оценки вариабельности сердечного ритма, суть которых сводится к определенному алгоритму обработки 5-минутных или суточных записей ЭКГ. Отечественные исследователи считают, что применение евро-американских стандартов не привело к ожидаемому прогрессу в установлении диагностической ценности вариабельности сердечного ритма [1].

Поэтому актуальным для этих целей является разработка информационных методов изучения паттернов микроструктуры ритма сердца, направленных на классификацию режимов управления ритмом сердца и в последующем — функциональных состояний человека [3, 5].

Работа выполнена при поддержке проекта РНПВШ.2.2.3.3/4307 и в соответствии с планами проблемной комиссии по хронобиологии и хрономедицине РАМН и научным направлением медицинского факультета БелГУ «Разработка универсальных методологических приемов хронодиагностики и биоуправления на основе биоциклических моделей и алгоритмов с использованием параметров биологической обратной связи».

Цель и задачи исследования: целью является оптимизация диагностических исследований по оценке успешности и эффективности проводимого биоуправляемого игрового тренинга.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Разработать условно-вероятностные модели паттерна вариативности межпульсовых интервалов.
- 2. Разработать составляющие компоненты микроструктурного паттерна вариативности межпульсовых интервалов на основе информационного анализа.
- 3. Разработать алгоритм принятия решения об успешности и эффективности проведенного биоуправляемого игрового тренинга.

Для этих целей был использован микроструктурный анализ ритма сердца. Данная модель рассматривается нами в виде последовательного развертывания цепи событий, имеющих условно-вероятностный характер. В соответствии с ним строят дифференциальную кривую распределения, а по ее вероятностям вычисляют все параметры энтропии. Вычисления осуществляли в основной выборке по 500 кардионитервалов: всю полученную шкалу длительностей RR-интервалов делили на классовые интервалы по 0,05 с и каждый интервал временного ряда регистрируемого вектора кодировался номером классового интервала, соответствующего его длительности.

В таблице 1 рассмотрены составляющие компоненты микроструктурной модели паттерна HRV.

Эти компоненты включают вектор повторяющихся значений предыдущего и последующего интервалов RR, временную составляющую из нулевых, укорачивающих и удлиняющих коррекций интервала RR.

Алфавит системы включает все классы дифференциальной гистограммы распределения межпульсовых интервалов, включающих диапазоны норморитмии, тахиритмии и брадиритмии, встречающихся как в норме, так и в патологии.

Информационные показатели модели соответствуют параметрам энтропии ритма сердца.