Физико-математические науки

НАБЛЮДЕНИЕ ПРОЗРАЧНЫХ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ ПО МЕТОДУ НЕЛИНЕЙНОГО ФАЗОВОГО КОНТРАСТА

Бубис Е.Л., Каменский В.А., Матвеев А.З., Орлова А.Г.

Институт прикладной физики РАН Нижний Новгород

Метод фазового контраста широко используется для визуализации и исследования прозрачных (фазовых) объектов [1, 2]. В классическом (линейном) методе фазового контраста для преобразования фазовой модуляции, вносимой различными элементами объекта в амплитудную в спектральной плоскости объекта (фурье-плоскости) устанавливается фазовая пластинка Цернике, создающая селективный сдвиг фаз между нулевой и высшими пространственными частотами $\Theta = \pm \pi/2$. Подобное фазовое рассогласование может быть организовано также в слое нелинейной среды в случае его размещения вместо пластинки Цернике в той же самой спектральной области, в области, где пространственные гармоники разделены. В общем случае лля слабоконтрастных наблюдаемых объектов любые селективные манипуляции в спектральной области приводят к изменению структуры их изображения. Возможное использование нелинейно-оптических процессов для создания необходимого сдвига фаз в фазовоконтрастных системах продемонстрирована в [4-6]. Для осуществления этого процесса могут быть использованы среды с любым типом кубической нелинейности. Концепция данных нелинейных ячеек Цернике, как нелинейно-оптических устройств для анализа фазы световой волны была предложена в [3]. В данной работе наблюдение прозрачных объектов проводилось по методу нелинейного фазового контраста с фототермической ячейкой Цернике, работающей на тепловом типе нелинейности.

В работе в качестве нелинейной ячейки Цернике использовались жидкостные кварцевые кюветы толщиной 1 мм, заполненные этиловым

спиртом или четыреххлористым углеродом с добавлением небольшого количества поглотителя.

В качестве источника излучения использовался одномодовый He-Ne-лазер. Регулировка мощности излучения осуществлялась за счет поворота призмы Глана вокруг своей оси. Мощность излучения измерялась калориметром. Прошедшее через объект излучение фокусировалось объективом в середину кюветы с нелинейной средой. В качестве объектива использовалась линза с фокусным расстоянием F=15 см, переносящая изображение объекта с большим увеличением в плоскость экрана, на котором визуализированное изображение фотографировалось цифровым фотоаппаратом.

Использовались фазовые объекты как помещенные в иммерсионную жидкость, так и без нее, визуализированные изображения которых предварительно наблюдались традиционным методом фазового контраста на инвертированном микроскопе Axiovert 200 (Karl Zeiss). Проведены эксперименты как с модельными, так и естественными биологическими объектами (пресноводные диатомовые водоросли размером около 30 мкм). Экпериментально продемонстрировано усиление контраста и визуализация изображений ряда фазовых объектов.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Скворцов Г.Е., Панов В.А., Поляков Н.И., Федин Л.А. Микроскопы. Под ред. Полякова Н.И. Л.: «Машиностроение». 1969. 512 с.
- 2. Франсон М. Фазово-контрастный и интерференционный микроскопы. 1960. 180 с.
- 3. Воронцов М.А., Корябин А.В., Шмальгаузен В.И. Управляемые оптические системы. М.: Наука. 1988. 272 с.
- 4. Junmin Liu et al // Appl. Opt. 1995. V. 34. N $22.\,P.\,4972.$
- 5. Iturbe Castillo M.D. et al $/\!/$ Opt. Eng. 2001. V.40. N 11. P. 2367.
- 6. Бубис Е.Л. Препринт ИПФ РАН № 698. Н. Новгород. 2006.

Химические науки

ОБ ИЗВЛЕЧЕНИИ ЦИНКА ИЗ ОТРАБОТАННЫХ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА

Орлин Н.А.

Владимирский государственный университет

Цинк является одним из самых применяемых цветных металлов в различных областях, включая производство химических источников тока.

Ежегодное потребление химических источников тока составляет более ста миллиардов

штук, в России – несколько миллионов. Актуальность проблемы утилизации отработанных одноразовых источников тока обусловлена большим содержанием в них цветных металлов. Поскольку сбор отработанных гальванических элементов в нашей стране не производится, они отправляются на свалки, где по этой же причине оказываются сотни и даже тысячи тонн цветных металлов со всеми вытекающими последствиями. Проведенные нами исследования показали, что попав в окружающую среду, химические источники тока за короткое время разрушаются и резко увеличи-