Концентрацию общих липидов и βлипопротеидов определяли с применением тестнаборов производства фирмы "Lachema" (Чешская Республика), триглицеридов, общего холестерина и α-холестерина - с использованием тест-систем производства фирмы «Ольвекс-Диагностикум» (г. Москва).

Полученные нами результаты представлены в таблице 1.

Таблица 1 Динамика изменений липидного и липопротеидного спектров сыворотки крови у

больных миомой матки до и после гистерэктомии

	Общие ли-		Триглице-		Холесте-		α-		β-	
руп-	пиды, г/л		риды, ммоль/л		рин, ммоль/л		холестерин,		липопротеи-ды,	
па							ммоль/л		г/л	
	до ле-	после	до ле-	после	до ле-	после	до ле-	после	до ле-	после
	чения	лечения	чения	лечения	чения	лечения	чения	лечения	чения	лечения
	$5,54\pm$	$4,27\pm$	$0.75 \pm$	1,79±	$7,85\pm$	6,39±	1,97±	1,13±	1,91±	3,3±
	0,73	0,37	0,04	0,22	0,06	0,1	0,14	0,31	0,13	0,24
	5,78±	6,2±	1,11±	1,23±	6,63±	5,14±	1,73±	1,14±	1,98±	2,77±
I	0,4	0,24	0,26	0,29	0,49	0,27	0,23	0,1	0,25	0,2

Из данных, приведенных в таблице видно, что у больных до ампутации матки содержание липидов и липопротеинов в сыворотке крови не выходит за пределы нормы, однако у женщин с размерами опухоли соответствующими 15-17 неделям беременности, все показатели изменяются более значительнее, чем у больных 2-ой группы. Кроме того, обращает на себя внимание высокий уровень общего холестерина (в норме он не превышает 5,17 ммоль/л), причем в 1-ой группе больных, имеющих большие размеры опухоли, его концентрация существенно выше, чем во 2-ой. Гистерэктомия имеет следствием незначительный подъем концентрации триглицеридов (в первой группе больных этот показатель даже несколько превысил нормальный уровень (1,79 ± 0,22 ммоль/л), β-липопротеинов, а также снижение содержания общего холестерина и холестерина липопротеинов высокой плотности (ЛПВП), причем последние снижаются по сравнению с нормальными показателями (> 1,42 ммоль/л). Эти изменения липидного спектра, вероятно, являются следствием изменения гормонального статуса больных после проведения операции по удалению тела матки.

НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ И УГЛЕВОДНОГО ОБМЕНА ПРИ ПАРЕНТЕРАЛЬНЫХ ВИРУСНЫХ ГЕПАТИТАХ У БЕРЕМЕННЫХ

Магомедова З.М., Зульпукарова Н.М., Магомедов М.М.

Дагестанская государственная медицинская академия, Россия, г. Махачкала

Проблема вирусных гепатитов у беременных является одной из самых актуальных в современной медицине. Вирусные гепатиты оказывают

неблагоприятное влияние как на организм матери, так и на организм плода, приводя к хронической внутриутробной гипоксии и гипотрофии, и перинатальной смертности (Н.А.Фарбер,1990,С.Н. Соринсон,1990). Известно также, что при вирусных гепатитах имеют место нарушения белкового обмена, реологии крови и микроциркуляции (Н.Д. Ющук,1992; С.Н. Соринсон,1995) Это определило цель нашей работы: изучить состояние микроциркуляции и углеводного обмена при вирусных гепатитах В и С у беременных.

Под нашим наблюдением находились 44 беременные в третьем триместре с диагнозом вирусный гепатит. Из них -42% с верифицированным гепатитом В и 58% - с гепатитом С. Контрольные группы составили 10 небеременных женщин с вирусным гепатитом В и 10 -с гепатитом С соответствующего возраста. Диагноз выставлялся на основании данных эпидемиологического анамнеза, биохимических исследований крови на маркеры вирусных гепатитов, ультразвукового исследования печени. Течение болезни было тяжелым у 52%, среднетяжелым - у 30%, у остальных - легким.

По результатам наших исследований, у беременных женщин, больных вирусным гепатитом, выявлены существенные изменения в системе свертывания крови: тромбоцитопения $(161,2\pm10^9/\pi)$, снижение протромбинового индекса $(77,0\pm2,3)$, концентрация фибриногена $(18,4\pm2,1)$, наиболее выраженные у больных с тяжелым течением болезни. .В контрольной группе эти показатели были следующими: количество тромбоцитов протромбиновый $198 \times 10^9 / \text{л} \pm 6.2$: индекс фибриногена-80.5+1.7%концентрация здоровых $-238x10^9$ /л- $97,5\pm1,4\%$ -15,6±1,1г/л. У $6,3\pm1,4$ г/л соответственно.

Повышение вязкости крови было более выражено у тяжелых больных $(5.6\pm0,1y)$, менее -при легкой форме $(5,6\pm0,3~\eta)$.

Возникающие при вирусном гепатите нарушения реологии крови, по-видимому, связаны со снижением прочности сосудистой стенки и плазмореей, обусловленных интоксикацией.

Уровень молочной кислоты был также существенно повышен у больных с тяжелым течением (2,6 \pm 0,4 ммоль/л при норме- 0,9 \pm 0,2). При легкой форме он составил 1,9 \pm 0,4 ммоль, в контрольной группе-1,-9 \pm 0,9 ммоль/л.

Гиперлактацидемия при вирусных гепатитах, на наш взгляд, является следствием тканевой гипоксии, вызванной расстройством микроциркуляции, которая, в свою очередь, обусловлена интоксикацией.

Конъюнктивальная ангиноскопия выявила внесосудитые, сосудистые и внутрисосудистые нарушения микроциркуляции. Конъюнктивальный индекс при тяжелом течении вирусного гепатита составил 20,9 баллов (в контрольной группе 16,4±0,4 при норме 3,4±0,3), при легком-11,0±0.3 баллов.

Таким образом, вирусные гепатиты у беременных протекают чаще в тяжелой и среднетяжелой форме с выраженными нарушениями реологии, микроциркуляции и углеводного обмена крови. Динамика процесса нормализации этих показателей у больных вирусными гепатитами может служить дополнительным критерием выздоровления больных и использоваться для оценки тяжести состояния и эффективности проводимой терапии.

УРАВНЕНИЯ РАСЧЕТА ЭНЕРГЕТИЧЕСКОГО И ВОДНОГО БАЛАНСА КАТАБОЛИЗМА ЖИРНЫХ КИСЛОТ И ТРИАЦИЛГЛИЦЕРОЛОВ, КОЭФФИЦИЕНТ ЭФФЕКТИВНОСТИ И СРАВНИТЕЛЬНАЯ БИОЭНЕРГЕТИКА

Матьков К.Г.

Кафедра биохимии Чувашского государственного университета им.
И.Н. Ульянова

Предлагаются уравнения расчета энергетического (части запасаемой в форме $AT\Phi$) и водного баланса полного окисления жирных кислот и триацилглицеролов. Введено понятие коэффициента эффективности – $k_{3\phi}$ (количество $AT\Phi$ запасаемых в расчете на углеродный атом окисляемого соединения) и уравнение для его вычисления. Найдено, что коэффициент эффективности варьирует в пределах одного класса соединений и зависит от числа углеродных атомов и метаболических путей, участвующих в окислении соединения. Приведены примеры прикладного использования

предлагаемых уравнений и выводы, проистекающие из полученных результатов.

Эффективность путей катаболизма определяется, в частности, количеством энергии запасенной в форме АТФ или соединений приравниваемых ей. Как правило, рассчитывается количество эквивалентов АТФ затраченных или полученных в метаболическом пути или совокупности путей. Большинство авторов предлагают систему подсчета, в которой суммируются (алгебраическая сумма) восстановленные пиридиновые нуклеотилы $(HAДH + H^{+}, HAД\PhiH + H^{+}), флавиновые нуклео$ тиды (ФАДН2, ФМНН2) и нуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ). Коэффициент окислительного фосфорилирования - Р/О при поступлении электронов и протонов в цепь переноса электронов (ЦПЭ) от НАДН приравнивают 3 [1,4,5,8,9] или 2,5 [2,10], а при поступлении электронов и протонов от $\Phi A \Pi H_2 - 2[1,4,5,8,9]$ или 1,5[2,10]. Нуклеозидтрифосфаты приравниваются 1 АТФ (при монофосфатном расщеплении) или 2 АТФ при пирофосфатном расщеплении. В своих расчетах автор использует величины Р/О (2,5 и 1,5 для НАДН и ФАДН₂ соответственно). В литературе также отсутствуют простые уравнения для расчета водного баланса метаболических путей.

Для облегчения расчета энергетического и водного баланса катаболизма липидов предлагаются уравнения, и рассматривается их прикладное значение.

Расчет биоэнергетики полного окисления жирных кислот с четным числом углеродных атомов

Для выведения уравнения используем формулу 1. В менее выраженной форме элементы этой формулы имеются у А. Ленинджера[4].

$$n = m/2 \cdot 10 + (m/2 - 1) \cdot 4 - 1.5a - 2.$$
 (1)

Где «п» — количество запасаемых эквивалентов АТФ; «т» — количество углеродных атомов в жирной кислоте; m/2 — количество молекул ацетил-КоА образуемых в процессе β -окисления; «10» — количество эквивалентов АТФ образуемых при окислении ацетил-КоА в цикле Кребса; (m/2-1) — число этапов β -окисления; «4» — количество эквивалентов АТФ запасаемых на каждом этапе (1 НАДН + H^+ , 1 ФАДН₂); «2» — количество эквивалентов АТФ потраченное на активирование жирной кислоты, «а» - число двойных связей.

В процессе β -окисления непредельных, жирных кислот на этапе окисления участка молекулы с двойной связью не используется ацил-КоА – дегидрогеназная реакция, а следовательно не образуется $\Phi A \Pi_2$ (1,5 эквивалента Π 0, поэтому в уравнение 1 введена переменная «а».

Преобразование уравнения 1 приводит к выражению 2.

$$n = 7m - 1.5a - 6.$$
 (2)