зависела от его концентрации в среде, что указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл адреналин вызвал (за счет активации β -AP?) более выраженное повышение OPЭ, степень которого для концентраций 10^{-10} - 10^{-7} г/мл возрастала с их увеличением; для концентраций 10^{-6} и 10^{-5} г/мл она уменьшалась (за счет активации α -AP?). В концентрациях 10^{-13} , 10^{-12} и 10^{-11} г/мл ЛФХ повышал OPЭ, но степень этого повышения не зависела от его концентрации в среде, что также указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл ЛФХ не-

значительно (и слабее, чем адреналин) повышал ОРЭ (за счет активации специфических орфановых рецепторов, открытых [7]?). При совместном действии с адреналином ЛФХ (10^{-6} г/мл) увеличивал его способность (достоверно - для концентраций 10^{-10} , 10^{-9} и 10^{-6} г/мл) повышать ОРЭ. Это можно объяснить тем, что ЛФХ блокирует α -AP (при активации которых адреналин снижает ОРЭ), не влияя на β -AP, активация которых повышает ОРЭ. Результаты исследования подтверждают представление [5-7] о способности ЛФХ регулировать деятельность клеток.

Таблица 1. Число эритроцитов (M±m), гемолизированных в 0,42% растворе NaCl (в % к контролю) при наличии в среде адреналина $(10^{-13} - 10^{-5} \text{ г/мл}, 1)$, ЛФХ $(10^{-13} - 10^{-5} \text{ г/мл}, 2)$ и адреналина $(10^{-13} - 10^{-5} \text{ г/мл})$ совместно с ЛФХ $(10^{-6} \text{ г/мл}, 3)$

Концент-рация,	Число на-	Адреналин	ЛФХ	Адреналин + ЛФХ
г/мл	блюдений	1	2	3
10^{-13}	10	54,0±7,3*	57,7±9,1*	49,8±7,7*
10^{-12}	10	59,2±6,2*	53,9±8,8*	46,8±7,4*
10 ⁻¹¹	10	56,5±6,8*	59,5±8,5*	42,7±6,5*
10^{-10}	22	48,5±6,1*	51,2±6,1*	32,8±4,9*bc
10-9	22	50,0±5,5*	51,7±5,7*	32,7±5,3*abc
10 ⁻⁸	22	43,5±5,8*	52,0±5,6*	36,5±5,0*
10 ⁻⁷	12	34,0±6,1*	47,4±7,9*	34,4±7,6*
10 ⁻⁶	19	43,7±5,9*	52,0±6,0*	32,5±5,4*bc
10 ⁻⁵	12	49,8±8,1*	50,4±6,4*	31,8±7,5*

^{*-}различия с контролем достоверны, p<0,05, по критерию Стьюдента;

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабин А. П. и др.//Гемореология в микро- и макроциркуляции: Мат. межд. конф. Ярославль, 2005. С. 196.
- 2. Длусская И. Г. и др. //Авиакосмич. и экол. мед. 1997. № 5. С. 64-70.
- 3. Кленова Н.А., Власов Д.Н. //Актуальные проблемы медицины, биологии и экологии. Т. 2. Томск. 2003. C.282-283.
- 4. Меньшиков В.В. Лабораторные методы исследования в клинике. М., 1987. С. 119- 120.
- 5. Проказова Н.В. и др. //Биохимия. 1998.Т.63, в. 1. С. 38-46.
- 6. Oka H. et al. //Arterioscler. Thromb. Vasc. Biol. 2000. V. 20. P.244-250.
- 7. Rikitake Y. et al. //ibid. 2002, V. 22. P.2049-2053.

ВЛИЯНИЕ ЛИЗОФОСФАТИДИЛХОЛИНА НА АЛЬФА-АДРЕНОРЕАКТИВНОСТЬ ГЛАДКИХ МЫШЦ СОСУДОВ ПОЧЕЧНОЙ АРТЕРИИ КОРОВЫ

Кашин Р.Ю., Циркин В.И., Проказова Н.В. Кировская государственная медицинская академия, Вятский государственный гуманитарный университет, Киров, Институт экспериментальной кардиологии РКНПК, Москва

В последние годы уделяется большое внимание лизофосфатидилхолину (Л Φ X) как регулятору взаи-

модействия агонистов с рецепторами [3,6-10], в том числе с М-холинорецепторами [1,3] и бета-адренорецепторами (бета-AP) [2]. Это соединение образуется в клеточных мембранах под влиянием фосфолипазы A_2 , а в плазме крови находится в свободном и в связанном (с альбуминами) состоянии [3]. Цель работы состояла в изучении влияния ЛФХ на альфа-адренореактивность гладких мышц почечной артерии.

Регистрацию сократительной активности (СА) 173 полосок (6-8х2-3 мм), циркулярно иссеченных из почечной артерии коровы (n=15), проводили по методике [5] на «Миоцитографе» при 37°С в условиях непрерывной (0,7 мл/мин) перфузии раствором Кребса, содержащего в качестве блокатора бета-АР обзидан (10^{-6} г/мл) . В 27 опытах оценивали влияние ЛФХ (10^{-6} г/мл) г/мл; Харьков) на СА полосок, в 5 - оценивали эффект адреналина (10⁻⁹-10⁻⁵ г/мл) а в 141 (11 коров) – влияние ЛФХ (10^{-15} - 10^{-5} г/мл) на тонус, вызываемый адреналином в концентрации 10-6 г/мл. Часть исследований проводилась спустя 1-2 часа после забоя животного, а часть (с целью изучения влияния эндотелия на эффекты адреналина и ЛФХ) – через сутки. Различия оценивали по критерию Стьюдента, считая их достоверными при р<0,05.

Установлено, что исходно полоски не обладали фазной СА и имели низкий базальный тонус, а ЛФХ (10^{-6} г/мл) не влиял на эти показатели. Адреналин (n=5) в концентрации 10^{-9} г/мл не влиял на тонус, а в концентрациях 10^{-8} - 10^{-5} г/мл дозозависимо повышал его (соответственно до $2,7\pm0,2$; $6,5\pm1,0$; $26,7\pm4,8$; $36,3\pm7,2$ мH, M±m); тонус был устойчивым и снижал-

а, b и с - различия с 1 (а), 2 (b) и с $\Pi\Phi X$ в концентрации 10^{-6} г/мл (c) достоверны (p<0,05) по критерию Манна-Уитни.

ся при удалении адреналина. Независимо от состояния эндотелия, ЛФХ в концентрациях 10^{-15} - 10^{-11} г/мл, как правило, не оказывал влияние на тонус, вызываемый адреналином (10^{-6} г/мл), хотя в отдельных экспериментах он вызывал транзиторное снижение тонуса. В концентрациях 10^{-10} - 10^{-5} г/мл ЛФХ достоверно снижал этот тонус (табл.). Удаление ЛФХ сопровождалось восстановлением исходного тонуса.

Таким образом, впервые показано, что ЛФХ в концентрациях 10^{-10} - 10^{-5} г/мл проявляет свойства конкурентного альфа-адреноблокатора. Не исключено, что ЛФХ является компонентом эндогенного блокатора альфа-АР (ЭБААР), наличие которого обнаружено у больных с артериальной гипертензией в опытах с циркулярными полосками почечной артерии коровы [4].

Таблица 1. Величина (M \pm m) тонического сокращения циркулярных полосок почечной артерии коровы (в мН и в % к 1-этапу) при изолированном и совместном с лизофосфатидилхолином (ЛФХ, 10^{-15} - 10^{-5} г/мл) действии

Концен-	Harana	Этапы эксперимента						
трация ЛФХ,	Число наблю- дений	1-й (адреналин, 10 ⁻⁶ г/мл)	2-й (адреналин, 10 ⁻⁶ г/мл + ЛФХ)		3-й (адреналин, 10 ⁻⁶ г/мл)			
г/мл		мН	мН	%	мН	%		
10 ⁻¹⁵	9	5,0±0,6	4,0±1,0	83,3±19,9	7,3±2,0	140,0±31,9*		
10 ⁻¹⁴	4	7,4±0,3	3,9±0,4*	54,0±7,1*	4,9±0,4*	66,5±4,1*		
10 ⁻¹³	10	6,6±1,2	5,1±1,7	60,7±19,9	6,8±1,6	106,8±14,5		
10 ⁻¹²	8	14,1±2,6	9,3±1,5	73,2±8,3*	10,3±1,8	79,1±10,2		
10-11	2	13,7±5,9	10,8±4,9	77,5±2,5*	13,2±6,4	93,8±6,3		
10 ⁻¹⁰	11	10,5±2,5	5,7±1,8	45,5±8,5*	$7,3\pm2,5$	56,3±9,0*		
10 ⁻⁹	20	15,1±1,8	3,3±1,1*	21,0±4,9*	11,0±1,5#	74,6±5,7*#		
10 ⁻⁸	17	9,7±1,4	4,4±1,2*	39,3±10,1*	8,8±1,4#	88,3±10,7#		
10 ⁻⁷	12	9,5±1,7	5,0±1,4	57,1±16,0*	10,1±2,0#	114,5±24,0		
10 ⁻⁶	30	13,1±1,6	1,3±0,9*	6,7±9,6*	13,6±1,8#	102,3±8,1#		
10 ⁻⁵	18	14,2±2,3	5,1±1,7*	39,5±14,9*	14,5±2,7#	93,9±14,0#		

^{*} и # - различия с 1-м (*) и 2-м (#) этапами достоверны (p<0,05, по критерию Стьюдента)

СПИСОК ЛИТЕРАТУРЫ

- 1. Куншин А.А. и др. //Физиология человека и животных: от эксперимента к клинической практике: Тез. докладов V молодежной научной конференции. Сыктывкар. 2006. С.75-76.
- 2. Пенкина Ю.А. и др. //Артериальная гипертензия. 2006. Т.12. Приложение. С.63.
- 3. Проказова Н.В. и др. //Биохимия. 1998. Т.63, В.1. С.38-46.
- 4. Снигирева Н.Л. и др. //Артериальная гипертензия. 2006. Т.12. Приложение. С.79.
- 5. Циркин В.И. и др. //ДАН. 1997. Т.352. №1. С.124-126.
- 6. Oka H. et al. //Arteriosclerosis. Thromb. Vasc. Biol. 2000. V.20. P.244-250.
- 7. Rikitake Y. et al. //Arteriosclerosis, Thrombosis, and Vasc. Biol. 2002. V.22. P.2049-2053.
- 8. Saulnier-Blache J. //Med. Sci. 2004. V.20. No 8-9. P.799-803.
- 9. Watanabe T. et al. //Jpn. Heart J.2002. V.43. №4. P.409-416.
- 10. Yamakawa T. et al. //Arteriosclerosis, Thrombosis, and Vasc. Biol. 2002. V.22. №5. P.752-758.

РОЛЬ ЛИМФОЦИТОВ В РАЗВИТИИ И ТЕЧЕНИИ ХРОНИЧЕСКИХ БОЛЕЗНЕЙ ОРГАНОВ ПИЩЕВАРЕНИЯ

Парахонский А.П. Кубанский медицинский университет Краснодар

Основные принципы иммунологии, её достижения, методические приёмы нашли широкое примене-

ние в гастроэнтерологии. Они способствуют формированию оригинальных концепций патогенеза, совершенствованию диагностики, повышению эффективности терапии при болезнях органов пищеварения.

Цель работы - обобщение количественных и качественных изменений лимфоцитов (ЛФ) при заболеваниях органов пищеварения (ЗОП). Анализ результатов многолетних исследований позволил выявить основные закономерности. При хронических ЗОП отмечаются изменения общего числа лейкоцитов, ЛФ, уменьшение содержания Т-лимфоцитов в периферической крови, изменение соотношения между числом В- и Т-лимфоцитов, а также субпопуляциями Тлимфоцитов, опосредующих хелперную и супрессорную функции. Нарушается физиологическое соотношение между субпопуляциями ЛФ не только в периферической крови, но и непосредственно в ткани поражённых органов: печени, тонкой кишке, желудке и др. Возможной причиной этого может служить перераспределение ЛФ между периферической кровью и соответствующими органами. Изменение содержания ЛФ сопровождается нарушением их функциональной активности: способности распознавать чужеродные антигены, продукции лимфокинов, регуляции синтеза иммуноглобулинов (Ig) и интенсивности иммунных реакций. Повышаются чувствительность Т - лимфоцитов к действию специфических антигенов (ткани печени, тонкой кишки, желудка и др., а также вирусных, бактериальных), цитотоксическая активность.

Изменения функциональной активности иммунокомпетентных клеток (ИКК) при ЗОП могут быть обусловлены генетическими факторами, а также инфекцией, прежде всего вирусной. Они могут быть первичными по отношению к повреждению органов