Таблица 1. Влияние триптофана (10^{-7}г/мл) на показатели (M+m) спонтанной и индуцированной агрегации

тромбоцитов женщин в III триместре беременности

•	Спонтанная агрегация		Агрегация, индуцированная			
Параметры агрегации			адреналином (2,5×10 ⁻⁶ г/мл)		АДФ (2,5×10 ⁻⁶ г/мл)	
	исходно	триптофан	исходно	триптофан	Исходно	триптофан
MC, %	$1,4\pm0,4$	2,6±0,3*	55,2±1,9	47,6±1,8*	53,2±2,1	56,4±1,0
Время достижения МС, сек.	113±37	261±47*	315±10	287±7*	267±12	275±11
МНКС, %/мин	2,4±0,5	3,6±0,8	39,0±6,8	29,9±2,1	47,2±1,8	48,0±1,9
Время достижения МНКС, сек.	76±8	207±21*	110±7	108±8	38±1	41±3
МСР, отн. ед.	2,2±0,2	3,0±0,2*	7,1±0,5	7,0±0,4	8,1±0,6	6,7±0,5
Время дости- жения МСР, сек	199±18	286±33*	106±6	104±8	41±2	38±2
МНКСР, отн.ед./мин	1,2±0,2	1,6±0,3	7,4±0,6	6,9±0,7	11,8±1,0	9,3±1,0
Время регистрации МНКСР, сек	24±3	31±3	50±4	43±2	23±1	24±1

Примечание: * - различие с исходом достоверно, р<0,05

СПИСОК ЛИТЕРАТУРЫ

- 1. Бышевский А.Ш, Галаян С.Л., Дементьева И.А. и др. Тромбоциты. Тюмень, 1996. 250 с.
- 2. Муляр А.Г., Гасанов М.Т., Ющук Е.Н. и др. //Эксперим. и клин. фармакол. 2004. Т.67, № 1. С. 61 68
- 3. Ноздрачев А.Д., Туманова Т.В., Дворянский С.А. и др. //ДАН. 1998. Т. 363, № 1. С. 133-136.
- 4. Туманова Т.В., Сизова Е.Н., Циркин В.И. //Бюлл. эксп. биол. и мед. 2004. Т.138, №10. С. 364-367
- 5. Хлыбова С.В. Яговкина Н.В. //Научные труды I съезда физиологов СНГ. М., 2005. Т.1. С. 136-137.
- 6. Циркин В.И., Дворянский С.А. Сократительная деятельность матки (механизмы регуляции). Киров, 1997. 270 с.

Клинико-эпидемиологические проблемы ревматологии, гастроэнтерологии, кардиологии, нефрологии, неврологии и инфектологии

ВЛИЯНИЕ АДРЕНАЛИНА И ЛИЗОФОСФАТИДИЛХОЛИНА (ЛФХ) НА ОСМОТИЧЕСКУЮ РЕЗИСТЕНТНОСТЬ ЭРИТРОЦИТОВ (ОРЭ)

¹Белёва С.В., ¹Вершинина Е.Ю., ¹ Корчёмкина Е.В., ¹Сухова А.Ю., ¹Циркин В.И., ²Проказова Н.В., ¹Костяев А.А. ¹Кировская государственная медицинская академии, ²Институт экспериментальной кардиологии РКНПК, Москва

Эритроциты человека содержат 2 типа адренорецепторов (AP) - β -AP и α -AP [1-3]. Полагают, что при активации β -AP ОРЭ повышается [1-3], а при активации α -AP — снижается [1]. Известно [5], что в клеточных мембранах, включая эритроцитарные, под влиянием фосфолипазы A_2 образуется $\Pi\Phi X$. Предполагают [5-7], что он играет важную роль в регуляции функций клеток. Цель работы — оценить влияние $\Pi\Phi X$ на способность адреналина изменять ОРЭ.

Исследовали венозную кровь 22 небеременных женщин (28,3±7,5 лет). Ее получали в объеме 4 мл и смешивали с 1 мл 5% раствора цитрата натрия. Оцен-

ку ОРЭ проводили через 4-6 часов по Идельсону Л. И. (1974) [4] в нашей модификации, заключающейся в замене раствора NaCl с 0,40% на 0,42% (при этом число гемолизированных эритроцитов приближается к 50%). В 3 ряда пробирок (по 6-9 в каждом) вносили по 0,1 мл крови; в 1-й ряд добавляли по 0,1 мл адреналина (в конечной концентрации от 10^{-13} до 10^{-5} г/мл), во 2-й - по 0,1 мл ЛФХ (от 10^{-13} до 10^{-5} г/мл), а в 3-й -0.1 мл адреналина (10^{-13} - 10^{-5} г/мл) и 0.1 мл ЛФХ (10^{-6} г/мл). Через 5 минут во все пробирки добавляли 0,42% раствор NaCl (до 5 мл); их выдерживали 30 мин. при 18-20°C, центрифугировали (5 мин, 2000 об/мин) при $18-20^{\circ}$ С на центрифуге ОПн-8УХЛ4.2., измеряли оптическую плотность надосадочной жидкости на КФК-2 и рассчитывали процент гемолизированных эритроцитов. Различия оценивали по критерию Стьюдента и Манна-Уитни, считая их достоверными при p<0,05.

Установлено, что в контроле (0,1 мл крови + 4,9 мл 0,42% раствора NaCl) число гемолизированных эритроцитов составило 64,1 \pm 7,0% от общего их числа. Адреналин (табл.) в концентрациях 10^{-13} , 10^{-12} и 10^{-11} г/мл повышал OPЭ, но степень этого повышения не

зависела от его концентрации в среде, что указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл адреналин вызвал (за счет активации β -AP?) более выраженное повышение OPЭ, степень которого для концентраций 10^{-10} - 10^{-7} г/мл возрастала с их увеличением; для концентраций 10^{-6} и 10^{-5} г/мл она уменьшалась (за счет активации α -AP?). В концентрациях 10^{-13} , 10^{-12} и 10^{-11} г/мл ЛФХ повышал OPЭ, но степень этого повышения не зависела от его концентрации в среде, что также указывает на его неспецифичность. В концентрациях 10^{-10} - 10^{-5} г/мл ЛФХ не-

значительно (и слабее, чем адреналин) повышал ОРЭ (за счет активации специфических орфановых рецепторов, открытых [7]?). При совместном действии с адреналином ЛФХ (10^{-6} г/мл) увеличивал его способность (достоверно - для концентраций 10^{-10} , 10^{-9} и 10^{-6} г/мл) повышать ОРЭ. Это можно объяснить тем, что ЛФХ блокирует α -AP (при активации которых адреналин снижает ОРЭ), не влияя на β -AP, активация которых повышает ОРЭ. Результаты исследования подтверждают представление [5-7] о способности ЛФХ регулировать деятельность клеток.

Таблица 1. Число эритроцитов (M±m), гемолизированных в 0,42% растворе NaCl (в % к контролю) при наличии в среде адреналина $(10^{-13} - 10^{-5} \text{ г/мл}, 1)$, ЛФХ $(10^{-13} - 10^{-5} \text{ г/мл}, 2)$ и адреналина $(10^{-13} - 10^{-5} \text{ г/мл})$ совместно с ЛФХ $(10^{-6} \text{ г/мл}, 3)$

Концент-рация,	Число на-	Адреналин	ЛФХ	Адреналин + ЛФХ
г/мл	блюдений	1	2	3
10^{-13}	10	54,0±7,3*	57,7±9,1*	49,8±7,7*
10^{-12}	10	59,2±6,2*	53,9±8,8*	46,8±7,4*
10 ⁻¹¹	10	56,5±6,8*	59,5±8,5*	42,7±6,5*
10^{-10}	22	48,5±6,1*	51,2±6,1*	32,8±4,9*bc
10-9	22	50,0±5,5*	51,7±5,7*	32,7±5,3*abc
10 ⁻⁸	22	43,5±5,8*	52,0±5,6*	36,5±5,0*
10 ⁻⁷	12	34,0±6,1*	47,4±7,9*	34,4±7,6*
10 ⁻⁶	19	43,7±5,9*	52,0±6,0*	32,5±5,4*bc
10 ⁻⁵	12	49,8±8,1*	50,4±6,4*	31,8±7,5*

^{*-}различия с контролем достоверны, p<0,05, по критерию Стьюдента;

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабин А. П. и др.//Гемореология в микро- и макроциркуляции: Мат. межд. конф. Ярославль, 2005. С. 196.
- 2. Длусская И. Г. и др. //Авиакосмич. и экол. мед. 1997. № 5. С. 64-70.
- 3. Кленова Н.А., Власов Д.Н. //Актуальные проблемы медицины, биологии и экологии. Т. 2. Томск. 2003. C.282-283.
- 4. Меньшиков В.В. Лабораторные методы исследования в клинике. М., 1987. С. 119- 120.
- 5. Проказова Н.В. и др. //Биохимия. 1998.Т.63, в. 1. С. 38-46.
- 6. Oka H. et al. //Arterioscler. Thromb. Vasc. Biol. 2000. V. 20. P.244-250.
- 7. Rikitake Y. et al. //ibid. 2002, V. 22. P.2049-2053.

ВЛИЯНИЕ ЛИЗОФОСФАТИДИЛХОЛИНА НА АЛЬФА-АДРЕНОРЕАКТИВНОСТЬ ГЛАДКИХ МЫШЦ СОСУДОВ ПОЧЕЧНОЙ АРТЕРИИ КОРОВЫ

Кашин Р.Ю., Циркин В.И., Проказова Н.В. Кировская государственная медицинская академия, Вятский государственный гуманитарный университет, Киров, Институт экспериментальной кардиологии РКНПК, Москва

В последние годы уделяется большое внимание лизофосфатидилхолину (Л Φ X) как регулятору взаи-

модействия агонистов с рецепторами [3,6-10], в том числе с М-холинорецепторами [1,3] и бета-адренорецепторами (бета-AP) [2]. Это соединение образуется в клеточных мембранах под влиянием фосфолипазы A_2 , а в плазме крови находится в свободном и в связанном (с альбуминами) состоянии [3]. Цель работы состояла в изучении влияния ЛФХ на альфа-адренореактивность гладких мышц почечной артерии.

Регистрацию сократительной активности (СА) 173 полосок (6-8х2-3 мм), циркулярно иссеченных из почечной артерии коровы (n=15), проводили по методике [5] на «Миоцитографе» при 37°С в условиях непрерывной (0,7 мл/мин) перфузии раствором Кребса, содержащего в качестве блокатора бета-АР обзидан (10^{-6} г/мл) . В 27 опытах оценивали влияние ЛФХ (10^{-6} г/мл) г/мл; Харьков) на СА полосок, в 5 - оценивали эффект адреналина (10⁻⁹-10⁻⁵ г/мл) а в 141 (11 коров) – влияние ЛФХ (10^{-15} - 10^{-5} г/мл) на тонус, вызываемый адреналином в концентрации 10-6 г/мл. Часть исследований проводилась спустя 1-2 часа после забоя животного, а часть (с целью изучения влияния эндотелия на эффекты адреналина и ЛФХ) – через сутки. Различия оценивали по критерию Стьюдента, считая их достоверными при р<0,05.

Установлено, что исходно полоски не обладали фазной СА и имели низкий базальный тонус, а ЛФХ (10^{-6} г/мл) не влиял на эти показатели. Адреналин (n=5) в концентрации 10^{-9} г/мл не влиял на тонус, а в концентрациях 10^{-8} - 10^{-5} г/мл дозозависимо повышал его (соответственно до $2,7\pm0,2$; $6,5\pm1,0$; $26,7\pm4,8$; $36,3\pm7,2$ мH, M±m); тонус был устойчивым и снижал-

а, b и с - различия с 1 (а), 2 (b) и с $\Pi\Phi X$ в концентрации 10^{-6} г/мл (c) достоверны (p<0,05) по критерию Манна-Уитни.