ВОЗМОЖНОСТИ И ПРОБЛЕМЫ НОВЫХ ТЕХНОЛОГИЙ В КЛИНИЧЕСКОЙ ЛАБОРАТОРНОЙ ЛИАГНОСТИКЕ

Парахонский А.П., Тыртышная Г.В. Кубанский медицинский университет, Госпиталь ветеранов, Краснодар

Медико-биологические аналитические технологии (МБАТ) представляют собой систему физических, химических и биологических процедур, проводимых в целях выявления определённого компонента биоматериала, его детекцию, идентификацию, качественную и количественную характеристику. Аналитом в них является генетический материал: ДНК и РНК, гены и их компоненты, а мишенями поиска - мутации генов, полиморфизм нуклеотидов. Сферы применения МБАТ: медицинская генетика, акушерство, кардиология, онкология, микробиология, инфекционные болезни, клиническая фармакология, иммунология и др. Клиническая информативность МБАТ подчинена требованиям диагностической доказательности результатов лабораторных исследований. При мультифакторных видах патологии учитывается всё многообразие этапов реализации генетической программы: транскрипция информации, синтез белков, их модификация. МБАТ заключаются в амплификации и гибридизации нуклеиновых кислот (ГНК), секвенировании нуклеотидных последовательностей. Общим для этих процессов является воспроизведение механизма дублирования наследственной информации в геноме. Технологии амплификации, т.е. производства множества копий ДНК из участка искомой ДНК или РНК, в клинико-диагностических лабораториях наиболее широко используется в формате ПЦР. В её основе лежит комплементарное достраивание ДНК-матрицы (репликации ДНК), осуществляемое in vitro с помощью фрагмента ДНК-полимеразы. Число копий специфического фрагмента ДНК увеличивается экспоненциально. Благодаря этому последовательности, присутствующие в изучаемом материале в минимальном количестве и не поддающиеся обнаружению никакими другими методами, легко выявляются с помощью ПЦР. ГНК представляет собой процесс образования стабильных двухнитевых молекул НК из комплиментарных однонитевых молекул. В результате образуются гибриды ДНК-ДНК, ДНК-РНК или РНК-РНК. В различных модификациях метода ГНК используется подсоединение специфичных зондов, конъюгированных с субстратом или ферментом. В результате происходит усиление образующегося сигнала, регистрируемого тем или иным способом в ходе определения. Схема ПЦР-диагностики: взятие биоматериала для исследования; пробоподготовка (выделение нуклеиновых кислот); постановка и проведение собственно ПЦР; детекция ампликонов (электрофорез геле, планшетная гибридизация, спектрометрия, хемолюминесцентный анализ и др.); интерпретация результатов.

К числу принципиальных усовершенствований, помимо технологии ПЦР, относится анализ кривых плавления ДНК с применением, как зондов, так и флюорофоров. Мелтинг-анализ с высоким разреше-

нием при выявлении однонуклеотилных полиморфизмов имеет чувствительность порядка 97-99%. По сравнению с другими технологиями сканирования мутаций этот способ анализа проводится в одной пробирке, не требует разделения продуктов после завершения ПЦР и совершается за 1-2 мин. Технология позволяет также в рамках одного процесса сканировать любое изменение последовательности и генотипировать изменения последовательностей путём изучения кривых плавления зонда при низкой температуре и продукта при высокой температуре. Это может сократить потребность в секвенировании сложных генов. МБАТ позволяют получить выигрыш времени для приближения эффективного лечения. Фантастические возможности предоставляет технология одновременного применения множественных зондов в биочипах, которая состоит в размещении на небольшом пространстве планшета сотен олигонуклеотидных микрозондов, каждый из которых специфичен для определённой последовательности в геноме исследуемого объекта. Биочипы могут использоваться для продуктов амплификации и гибридизации. Технико-экономическая доступность МБАТ тем важнее с позиций клинической лабораторной диагностики, чем выше клиническая ценность получаемой с её помощью информации и чем сложнее входящие в неё процедуры. В повседневной лабораторной практике, помимо применения положительных и отрицательных контролей на этапах выполнения исследований, должны проводиться процедуры внутрилабораторного контроля качества для оценки правильности и прецезионности результатов количественных методов. Контроль правильности, по существу, смыкается с доказательством специфичности исследования. Таким образом, проблемы обеспечения качества МБАТ решаемы на основе применения общих принципов обеспечения качества исследований в клинической лабораторной диагностике с учётом особенностей как самого аналита, так и свойств применяемых методов исследования. С применением МБАТ связана перспектива радикальной смены акцентов в лабораторной диагностике.

ИССЛЕДОВАНИЕ СОРБЦИОННОЙ ЁМКОСТИ МЕМБРАН ЭРИТРОЦИТОВ ДЛЯ ОЦЕНКИ ХАРАКТЕРА ЭНДОГЕННОЙ ИНТОКСИКАЦИИ ПРИ ДЕРМАТОЗАХ

Парахонский А.П., Цыганок С.С. Кубанский медицинский университет, Центр квантовой медицины «Здоровье», Краснодар

Основным маркером оценки эндогенной интоксикации (ЭИ) в норме и при патологии в настоящее время считают уровень в плазме крови веществ низкой и средней молекулярной массы (ВНСММ). Катаболическая составляющая ВНСММ представлена низко-молекулярными соединениями, продуктами катаболизма белков. Анаболическая часть — более сложными, пептидными соединениями, продуктами протеолиза белков. Вклад ВНСММ в развитие ЭИ определяется ролью их компонентов в регуляции го-