Качественное содержание витаминов в пробах бисквита приготовленного с пчелиной обножкой в количестве от 0,5% до 1,5% определяли методом хроматографии в тонком слое сорбента (TCX).

Контрольный образец бисквита характеризовался наличием витамина тиамина, также были выявлены следовые количества наличия пантотеновой кислоты. Проведенные исследования подтвердили теоретическое предположение о повышении витаминной ценности готовых изделий путем внесения пчелиной обножки. Так, все пробы бисквита характеризовались наличием таких витаминов как: витамин Д, тиамин, рибофлавин, пантотеновая кислота, никотиновая кислота, фолиевая кислота.

Сопоставительный анализ массовой доли эфирорастворимых липидов в пробах бисквита выявил, что опытные образцы содержат в среднем на 2,7% больше данных веществ по сравнению с контрольным. Наибольшим содержанием эфирорастворимых липидов характеризовалась проба бисквита приготовленная с внесением пчелиной обножки в количестве 1% к массе муки.

Таким образом проведенными исследованиями обоснована целесообразность применения пчелиной обножки в качестве пищевой добавки в производстве бисквита с целью повышения пищевой и биологической ценности, а также показателей качества готовых изделий.

Обобщая полученные экспериментальные данные по применению пчелиной обножки можно выделить следующие основные области ее применения и рекомендовать для:

- улучшения качества мучных кондитерских изделий;
- расширения ассортимента изделий лечебно-профилактического назначения;
- повышения биологической ценности мучных кондитерских изделий.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бутейкис Н.Г., Жукова А.А. Приготовление мучных кондитерских изделий. М., 1998.
- 2. Васильева Е., Пискунов С.В. Направления развития производства диетических изделий. //Хлебо-печение России, 2002, №6, с.6.
- 3. Вахонина Т.В. Пчелиная аптека.: Лениздат, 1992.-188 с.
- 4. Таранов Г.Ф. Промышленная технология получения и переработки продуктов пчеловодства. М.: Пищевая промышленность, 1996. 268 с.
- 5. Макарова В.Г. Иммунобиологическое действие меда, пыльцы и прополиса / Макарова В.Г., Семенченко М.В., Якушева Е.Н. //Пчеловодство. 1998. N25. c.52-53.

Работа представлена на III общероссийскую конференцию «Новейшие технологические решения и оборудование», г. Кисловодск, 19-21 апреля 2005 г. Поступила в редакцию 26.03.2005 г.

ПРИМЕНЕНИЕ УГЛЕРОДСОДЕРЖАЩИХ МАТЕРИАЛОВ ПРИ ЛИКВИДАЦИИ НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ

Темирханов Б.А.

Кубанский государственный университет, Краснодар

При возрастающих масштабах добычи нефти всегда есть угроза загрязнения окружающей среды. Для ликвидации разливов нефти и нефтепродуктов в настоящее время широкое распространение находит сорбционные методы сбора этих загрязнителей с поверхности воды и почвы с применением различных сорбционных материалов.

В настоящей работе проведены исследования по оценке свойств ряда коммерческих и новых сорбентов СТРГ, УСВР и материала на основе карбонизованной рисовой лузги. По результатам полученных характеристик сорбентов (сорбция при разной вязкости нефти, степени очистки водной поверхности, а также плавучести и водопоглощения) показано, что такие сорбенты, как УСВР и СТРГ, имеют наибольшую степень поглощения нефти с поверхности воды. Сорбенты СТРГ и УСВР по многим основным свойствам превосходят многие известные зарубежные сорбенты. Поглотительная способность по нефти сорбентов УСВР и СТРГ составляет 66,5 и 50 г/г соответственно. Расчетные данные показывают, что для сбора 1 тонны нефти потребуется 15—20 кг такого сорбента.

Важным показателем процесса сорбции является степень десорбции нефти из сорбента показывающая возможность возвращения нефти в производственный цикл. Нами рассмотрены различные способы регенерации этих материалов. Показано, что наиболее экономически целесообразно проведение десорбции нефти механическим отжатием сорбента с последующей термической переработкой.

Показано, что заметное изменение адсорбционной способности сорбентов наблюдается уже после первой регенерации у всех изучаемых сорбентов. Степень извлечения нефти из исследуемых коммерческих сорбентов составляет 60-70%, из сорбентов УСВР и СТРГ 90%.

Аналогами сорбентов УСВР и СТРГ служит сорбент «Праймсорб» (США) на основе вспененного полистирола. Но он обладает в 2 раза ниже сорбирующими возможностями и в 2 раза дороже. Кроме того, он частично растворяется в бензине и начинает плавиться при $115\,^{0}\mathrm{C}$.

Благодаря уникальному по сравнению с другими нефтесорбентами свойству сорбентов СТРГ и УСВР (воздух, содержащийся в порах этих сорбентов, при контакте с водой не вытесняется) успешно используются не только для ликвидации разливов нефтепродуктов и поверхностных загрязнений, но и как эффективный сорбционный материал для очистки нефтезагрязненных поверхностных стоков и сточных вод.

Работа представлена на III общероссийскую научную конференцию с международным участием «Новейшие технологические решения и оборудование», г. Кисловодск, 19-21 апреля 2005 г. поступила в редакцию 22.03.2005 г.