дов и нагрузки. Это создает благоприятные условия для внедрения вероятностных методов расчета в практику.

При решении задачи о состоянии конструкции в условиях эксплуатации, участок магистрального газопровода может быть охарактеризован конечным числом независимых параметров. Часть из которых характеризует нагрузки, другие — прочность материалов, третьи - отклонение реальных условий работы конструкции.

Уравнение границы области допустимых состояний конструкции представляется в виде

$$\widetilde{\psi}(x_1, x_2, x_3) = 0$$

где $\widetilde{\psi}(x_1,x_2...x_n)$ - функция работоспособности. Для оценки эксплуатационной надежности оболочки трубопровода предложено использовать характеристику прочности, которую А.Р.Ржаницын назвал резервом прочности.

Параметры системы: внутреннее давление транспортируемого продукта $X_1 = \widetilde{p}$; температурное воздействие транспортируемого продукта $X_2 = \Delta \widetilde{t}$; весовое воздействие грунта засыпки $X_3 = \widetilde{q}(x)$. При проведении моделирования в i-й точке факторного пространства учитывается изменение фактора X_3 по длине рассматриваемого линейного участка магистрального газопровода.

Предложена модель, определяющая функцию надежности конструкции в зависимости от изменений уровней параметров весового и эксплуатационного воздействия. Получение модели, описывающей реакции изучаемой системы на многофакторное возмущение, является одной из задач математического планирования эксперимента. Наиболее распространенными и полно отвечающими задачам статистического моделирования являются полиномиальные модели. Тогда зависимость между уровнями факторов и реакцией системы, представляем в виде полинома первого порядка

$$y = b_0 + b_1 \tilde{X}_1 + b_2 \tilde{X}_2 + b_3 \tilde{X}_3 + b_{12} \tilde{X}_1 \tilde{X}_2 + b_{23} \tilde{X}_2 \tilde{X}_3 + b_{123} \tilde{X}_1 \tilde{X}_2 \tilde{X}_3$$

Полный факторный эксперимент дает возможность определить коэффициенты регрессии, соответ-

ствующие не только линейным эффектам, но и всем эффектам взаимодействий.

Условиями работоспособности конструкции в этой задаче является не превышение прогибов и напряжений в конструкции, значений условия прочности при определенном уровне нагружения.

Основным объектом анализа являлись нагрузки, которым подвергается трубопроводная конструкция во время работы.

Предложенная методика позволяет определить области безотказной работы линейного участка газопровода в зависимости от изменения уровней параметров весового и эксплуатационных воздействий на газопровод, с помощью линейных соотношений. Она позволяет достаточно просто определить области риска для параметров эксплуатируемого участка газопровода.

Работа представлена на III научную конференцию с международным участием «Современные наукоемкие технологии», 19-26 февраля 2005г. Хургада (Египет). Поступила в редакцию 20.01.05 г.

ФОРМИРОВАНИЕ ПОВЕРХНОСТНЫХ СТРУКТУР ТВЕРДОГО ЖЕЛЕЗА ВЫГЛАЖИВАНИЕМ

Нагорнов Д.С., Швецов А.Н. Владимирский государственный университет, Муромский институт, Муром

Покрытия твердого железа первоначально получили применение при восстановлении изношенных поверхностей деталей машин, а в последнее время и для упрочнения поверхностей при изготовлении деталей.

Известно, что поверхностные структуры приработки имеют высокую износостойкость и несущую способность. В исследованиях решалась задача получить на поверхностях покрытий твердого железа, методом механической обработки, характеристики близкие к характеристикам поверхностей, сформировавшихся в условиях эксплуатации.

Таблица 1. Комплексная оценка наружного слоя поверхностей от условий формирования

Метод формирования поверхности	Шерохова- тость, мкм	Радиус скругления вершин, мкм		Углы профиля неровностей		Константы опорной поверхности	
	Ra	r_{non}	$r_{\rm np}$	eta_{non}°	$\beta_{\rm np}^\circ$	γ	b
Шлифование	0,32	32	120	6	3	2,7	4,0
	0,16	45	145	4	2	2,6	6,0
Тонкое	0,63	35	75	8	3	2,7	3,0
точение	0,32	40	130	4	2	2,6	3,7
Выглаживание	0,32	700	1000	0,8	0,5	2,5	6,0
	0,16	1400	2500	0,4	0,4	2,2	7,0
	0,08	2200	2900	0,3	0,3	2,1	8,0
Эксплуатация	0,16	1900	2600	0,5	0,3	2,1	7,0

Полученные данные (табл. 1) показывают, что по характеристикам поверхности, сформированные ме-

тодом выглаживания и в процессе эксплуатации близки. Характеристики поверхностей, полученные шли-

фованием и тонким точением отличаются от показателей поверхностей, сформировавшихся при эксплуатации.

Производству рекомендованы режимы тонкого точения: резцы из Гексанита P, углы заточки $\gamma=(-2)...(-6)^\circ, \alpha=8...10^\circ, \phi=40^\circ, \phi_1=10^\circ, r0,3$ мм, V > 1 м/c, S = 0,12 мм/об. Выглаживание: выглаживатель Гексанит P, радиус сферы 2 мм, $P_y=160...180$ H, S = 0,04 мм/об., число проходов 1...2.

Примечание: r_{non} и r_{np} – поперечные и продольные радиусы скруглений;

 eta_{non}° и eta_{np}° - поперечные и продольные углы профиля.

Работа представлена на II научную конференцию студентов, молодых ученых и специалистов с международным участием «Современные проблемы науки и образования», 19-26 февраля 2005г. Хургада (Египет), поступила в редакцию 29.12.04 г.

ПОСТРОЕНИЕ СИСТЕМАТИКИ МЕТОДОВ ПРИНЯТИЯ РЕШЕНИЙ

Олейников Д.П., Бутенко Л.Н. Волгоградский государственный технический университет, Волгоград

Актуальность разработки новых методов принятия решений определяется расширением областей их использования: экономика, менеджмент, военное дело и многих других, и более жесткими требованиями к результативности этих методов.

Целью данной работы построение систематики методов принятия решений, на основе которой можно было бы определить границы применимости известных методов принятия решений, тенденции их развития, а также выявить задачи, решение которых необходимо для качественного совершенствования существующих методов и, возможно, создания новых. Отметим, что отдельной актуальной проблемой является определение средств, созданных в искусственном интеллекте, для решения выявленных задач.

Для представления общей картины, которую формируют созданные к настоящему времени методы принятия решений, нами производилось построение их классификации. Для выбора критериев классификации первоначально производился их анализ.

Нами было проанализировано 24 метода принятия решений [1, 2, 3, 4], которые описаны в следующих аспектах: функциональная структура, позволяющая выявить основные этапы работы метода, морфологическая структура, характеризующая метод как систему определенной структуры; базис метода представляющий механизм реализации, границы применимости метода, отражающие ситуации, в которых метод дает адекватные результаты, и вне которых применение его нецелесообразно; достоинства и недостатки, которые следуют из анализа границ применимости.

На основании проведенного анализа были выявлены основные стадии, которые выполняются прак-

тически во всех рассмотренных методах принятия решений. Главными являются стадия формирования исходных данных о проблеме и стадия решения проблемы.

Стадия формирования исходных данных, в свою очередь, состоит из следующих этапов:

- определение критериев принятия решения (для многокритериальных задач);
- определение вариантов решения (для задач, в которых необходимо выбрать или упорядочить уже имеющиеся альтернативы);
- выявление предпочтений эксперта (для задач, в которых используется субъективная модель принятия решений);
- задание состояния среды (для задач, в которых используется объективная модель принятия решений):
- проверка корректности описания среды и предпочтений эксперта;
- формирование решающего правила / обобщенного критерия.

Стадия решения проблемы может состоять из следующих этапов:

- выбор лучшей альтернативы;
- выбор подмножества альтернатив;
- упорядочение альтернатив.

В результате анализа групп методов принятия решений определена основная тенденция их развития – повышение роли субъективизма (например – введение разнообразных коэффициентов оптимизма в теории игр) и, соответственно, актуальна задача интеллектуализации возможно большего числа стадий. Отметим также актуальную задачу расширения границ применимости методов, которая в настоящее время не может быть решена за счет агрегации существующих методов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ларичев О.И., Мошкович Е.М. Качественные методы принятия решений. М.: Наука, 1996. 206 с.
- 2. Ларичев О. И. Теория и методы принятия решений, а также Хроника событий в Волшебных Странах: Учебник. М.: Логос, 2000. 296 с.
- 3. Ларичев О.И. Наука и искусство принятия решений. М.: Наука, 1979. 200 с.
- $4. \quad http://www.nsu.ru/ef/tsy/ec_cs/fail_old/ma60prb. \\ htm$
 - $5. \quad http://tryphonov.narod.ru/tryphonov/\\$
 - 6. www.olap.ru

Работа представлена на научную заочную электронную конференцию «Прикладные исследования и разработки по приоритетным направлениям науки и техники», 20-25 января 2005 г. Поступила в редакцию 07.02.2005 г.