(1972), А.А. Уранова (1974), А.И. Перельмана (1975), Г.И.Иванова (1976), Петров К.М. (1984).

Вышесказанное позволяет принять степень увлажнения (гидроморфность) в качестве ведущего признака и без существенной потери информации о свойствах фаций свести все их многообразие в 8 типологических групп: реки, озера, очень сильно-, сильно-, средне-, умеренно гидроморфные, слабогидроморфные и негидроморфные.

Экологические группы растений в совокупности с почвенными индикаторами позволяют в полевых условиях достаточно надежно определить степень увлажнения (гидроморфности) фаций и их свойства.

Интегральной характеристикой свойств более крупных ПТК: (урочищ, местностей, ландшафтов, округов, материков, природных зон и пр.), как композиции моносистемных элементов - фаций, является их гидроморфная структура (ГС), т. е. пространственное, площадное и временное соотношение слагающих их типов фаций, а также степень гидроморфности. ГС может быть выражена в виде графических и картографических моделей, а также количественно в виде отношения целых чисел или процентов. Степень гидроморфности полисистемных ПТК выражается с помощью индекса гидроморфности (ИГ), который вычисляется путем отношения площади гидроморфных фаций ко всей площади ПТК. Выделяются очень сильно гидроморфные ПТК (ИГ более 0,8), сильно- $(\Pi\Gamma=0.8-0.6)$, средне- $(\Pi\Gamma=0.6-0.4)$, $(И\Gamma=0.4-0.2)$ и слабогидроморфные (ИГ менее 0.2).

ГС и ИГ ландшафтов зависят от распределения влаги, обусловленного взаимодействием климатических и геолого-геоморфологических факторов. Результат этого взаимодействия определяется соотношением факторов, способствующих и препятствующих накоплению влаги в ПТК.

Основными поставщиками и хранителями мертвого органического вещества в ГО являются гидроморфные ПТК, в которых оно сохраняется, консервируется и захороняется. Исходя из сказанного, в ГО по степени гидроморфности выделяются: экваториальная сильно гидроморфная зона, две тропические слабо гидроморфные зоны, две умеренные средне гидроморфные зоны, две полярных ледяные зоны. Поэтому не случайно богаты нефтью и газом экваториальная и умеренные зоны.

Деление всех ПТК по степени гидроморфности позволяет решить вопрос о комплексности ПТК, применить при изучении ландшафтов (и географии) математический аппарат, выявить внутриландшафтную структуру любого полисистемного ПТК или участка по одному ведущему признаку, оценить ресурсный потенциал ПТК, принять грамотное хозяйственное решение.

МАТЕРИКИ И ИХ ГИДРОМОРФНАЯ СТРУКТУРА

Литенко Н.Л.

Сахалинский государственный университет

Материк - это длительно существующий природно-территориальный комплекс (ПТК), континентальная часть парагенетической системы океан-материк, имеющий устойчивое **«ядро»**, препятствующее быстрому разрушению материка.

У Земле имеются материки как разрушающиеся, так и с различной скоростью увеличивающиеся в размерах. В первых преобладают горные породы докембрия, во вторых преобладающими являются горные породы фанерозоя. К первым можно отнести материки южного полушария: Африку и Австралию. К вторым – все остальные материки.

Силой, созидающей и разрушающей материки или способствующей их разрушению, является в основном вода в различных ее формах в сочетании с динамическими напряжениями в литосфере, возникающими под влиянием вращения Земли вокруг своей оси и влияния Луны.

У восточных берегов материков взаимодействия океана и материка направлены в противоположные стороны. Силы вращения Земли вокруг своей оси способствуют сжатию литосферы у восточных окраин материков. Силы приливов направлены против вращения Земли вокруг своей оси, поэтому они тоже способствуют такому сжатию. Здесь океан воздействует на материк через приливы и отливы. В геологическом плане материки противостоят воздействию океана (приливным силам Луны) через сток. При повышенном стоке твердых веществ в океан и усилению сжатия восточной окраины материка, происходит наступление материка на океан или его стабилизация, и наоборот.

У западных окраин материков приливные силы Луны ведут к воздействию материка на океан, т. е. происходит наползание материка на дно океана и этому процессу не противостоят приливы в океане. Приливная волна здесь зарождается (возникает своеобразный «вакуум») и далее движется к западу, поэтому давление приливов на материк отсутствует. В результате не случайно наблюдается отличие восточных и западных берегов материков в Евразии, а особенно Северной и Южной Америках.

Устойчивости материков к внешним воздействиям способствует наличие в их пределах центрального ядра, сформировавшегося в течение длительной и своеобразной геологической истории материка.

Центральным ядром материков могут быть области, с которой отсутствует вынос горных пород в океан, за её пределы (область внутреннего стока Евразийского материка, пустыни в Африке и Австралии), или области, где преобладают опускания и накопление осадков (Амазонская низменность), или это области со слабым стоков веществ (Антарктида, северная часть Северной Америки). Поэтому в каждом материке это устойчивое ядро будет своеобразным. Это утверждение может показаться не корректным. Однако, отмечается одна общая особенность в строении материков, подтверждающая этот вывод: матери-

ки имеют наибольшую ширину на широте (по параллели) в полосе развития центрального (стабилизирующего весь материк) ядра.

У Евразийского материка таким стабилизирующим ядром является область внутреннего стока, с которой отсутствует вынос горных пород в океан. Она простирается широкой полосой с запада на восток и имеет наибольшую длину вдоль 45 параллели. Единственный «прокол» границы бассейна внутреннего стока, через который осуществляется вынос твердых веществ, наблюдается на востоке в бассейне реки Амур. Сформировался он, по-видимому, под влиянием Байкальского рифта.

Областью стабилизации материка Северной Америки является северная его часть, расположенная в широтной полосе Гудзонова залива (50 параллель), с которой идет слабый сток в Северный Ледовитый и Атлантический океаны.

Ядрами стабилизации материка Южной Америки являются две низменности: Амазонская и Лаплатская,

перехватывающие значительную часть твердого стока с горных районов Анд.

Ядрами стабилизации Африки и Австралии являются соответственно их пустыни Сахара и Большая песчаная пустыня, с которых возможен вынос фрагментов горных пород только под влиянием ветров.

Особняком в этом ряду материков стоит материк Антарктида, длительное существование которого можно объяснить медленным стоком льда и твердых веществ в прилегающий Южный океан, отсутствием жидкого стока.

Определенное влияние на размеры стабилизирующих ядер материков и их гидроморфную структуру оказывает их площадь, географическое положение, особенности климата и геолого-геоморфологических условий. Наиболее устойчивы материки, расположенные в тропических широтах (30-40 градусов с. и ю. широт), где выпадает малое количество осадков.

Таблица 1. Оценка степени гидроморфности материков

Название материка	Площадь тыс. км ²	Площадь гидроморфных ПТК км² (примерно)	Степень гидроморф ности (ИГ) (примерно)
Евразийский	54870	10 000 000	0,18
Африка	30319	2 000 000	0,07
Северная Америка	24247	7 000 000	0,29
Южная Америка	17873	8 000 000	0,45
Австралия	7687	10 000	0,001
Антарктида	14100	льды	0,000

Чем больше размер ядра материков и ближе его положение к тропическим широтам, тем сильнее его негативное воздействие на увлажнение прилегающих оптимально увлажненных ландшафтов.

Ядра материков обычно совпадают с наиболее сухими районами Земли и должны рассматриваться и изучаться как глобальные центры действия атмосферы, влияние которых может иметь катастрофические последствия для населения.

ИСТОРИЯ ФОРМИРОВАНИЯ СЕТИ ОСОБО ОХРАНЯЕМЫХ ПРИРОДНЫХ ТЕРРИТОРИЙ УРАЛА И ЗАПАДНОЙ СИБИРИ

Скурихин Д.В. Екатеринбург, Уральский государственный педагогический университет

Система особо охраняемых природных территорий (ООПТ) Урала и Западной Сибири начала формироваться в начале XX века, с организацией первых особо охраняемых территорий. До появления первых охраняемых объектов и момента, когда они начали складываться в систему, долгое время развивались природоохранительные идеи.. До прихода русских на Урал в XVII веке местное население не оказывало значительного воздействия на природную среду. Заповедание в основном носило религиозно-культовый характер. Ограничения также вводились на промысловых угодьях имеющих важное значение. Священными считались такие объекты как рощи, скалы, деревья, озера и другие (Барановская 1978). Некоторые

элементы этого заповедания сохранились местами вплоть до XX века и учитывались при проектировании современной системы ООПТ.

В XVII-XVIII веках началось активное заселение и промышленное освоение территории Урала и Западной Сибири. Нагрузка на природную среду сопровождалась вырубками лесов, распашкой земель и частичным регулированием стока рек. Больше всего пострадали леса, которые являлись единственным источником топлива. Возникает очевидная необходимость охраны лесов. Этот процесс характерен и в целом для России (вспомнить хотя бы указы Петра I об охране корабельных лесов). На Урале наибольшее значение имели «инструкции»В.Н.Татищева: «О сбережении лесов» (1722), «Вальдемарская инструкция» (1723) (Архипова, Ястребов, 1990). В XVIII и в начале XIX веков о нерациональном использовании лесов писали как отечественные, так и зарубежные исследователи Урала, такие как П.С.Паллас, Н.Л.Фальк, И.Герги, И.И.Лепехин, П.И.Рычков и другие.

На протяжении XIX и в начале XX веков основные природоохранные меры также касались лесов (Луганский, Теринов, 1975). При этом к концу XIX века интересные природоохранные идеи по заповеданию отдельных объектов высказывались на заседаниях Уральского общества любителей естествознания (УОЛЕ). Многие природные объекты были описаны, и имелись попытки по созданию заповедных территорий. В дальнейшем эти объекты учитывались при развитии сети ООПТ. Законодательное формирование сети охраняемых природных территорий на Урале началось с создания в 1920 году Ильменского госу-