	Упрощенный метод расчета			Полный метод расчета		
Me^{n+}	Интервал рН	рНопт.	S _{min} , моль/л	Интервал рН	рН _{опт.}	S _{min} , моль/л
Zn ²⁺	7,9 – 11,5	9,7	1,8·10 ⁻⁶	9,5-10,5	10	1,8·10 ⁻⁶
Cu ²⁺	9,3 – 10,5	9,9	$3,1\cdot 10^{-10}$	~10	10	$3,2\cdot 10^{-10}$
Fe ²⁺	10,4 - 11,1	10,8	1,0.10-7	10,5-11	11	$1,1\cdot 10^{-7}$
Ni ²⁺	9,1 – 11,0	10,1	8,2.10-9	10-10,5	10	8,4.10-9
Mn ²⁺	11,6 – 12,6	12,1	1,6.10-7	~13	13	$1,1\cdot 10^{-6}$
Pb^{2+}	9,4 – 10,9	10,2	5,3.10-5	10-10,5	10	6,0.10-5
Co ²⁺	9,2 – 12,7	10,9	3,3.10-7	10-11,5	11	3,3.10-7
Cd ²⁺	10,3 – 12,9	11,6	2,2.10-7	11-12	11,5	2,2·10 ⁻⁷
Fe ³⁺	6,3 – 9,6	8,0	3,3·10 ⁻¹⁰	7-9	8	3,3.10-10
Cr^{3+}	83-94	8.9	1.6.10 ⁻⁶	8 5-9	Q	1 6.10 ⁻⁶

Таблица 1. Метод расчета минимальной растворимости гидроксидов металлов в водной среде, а также значений рH, при которых растворимость минимальна.

Проанализировав таблицу, можно сделать вывод, что значения минимальной растворимости по упрощенному методу, предложенному в данной работе, и полному методу расчета (с учетом всех гидроксокомплексов) практически совпадают для всех металлов, кроме марганца; интервал рН, при котором растворимость минимальна, рассчитанный по упрощенному методу более широкий, чем интервал, рассчитанный по полному методу. Однако по упрощенному методу можно более точно определить р $H_{\rm out}$.

Таким образом, полученные данные позволяют оценить эффективность гидроксидного метода очистки сточных вод от ионов тяжелых металлов, а также усовершенствовать процессы очистки природных и промышленных вод.

ИЗУЧЕНИЕ ВОЗМОЖНОСТИ БИОДЕГРАДАЦИИ СПАВ РАЗЛИЧНОЙ ХИМИЧЕСКОЙ ПРИРОДЫ

Пузырева С.Г.

За последние годы увеличивается количество загрязняющих веществ, попадающих в водные объекты Байкальского региона. Одна из основных причин усиливающегося загрязнения водных ресурсов региона заключается в том, что сооружения очистки промышленных и хозяйственных бытовых сточных вод морально и технически устарели и вследствие этого в нормальном режиме они не очищают стоки до предельно-допустимых концентраций (ПДК) содержания загрязняющих веществ, нормируемых в Байкальском регионе. Синтетические поверхностно-активные вещества (СПАВ) входят в число ксенобиотиков, потенциально опасных для окружающей среды. Интенсивное производство и применение детергентов обуславливает присутствие СПАВ в качестве постоянного компонента отходов и выбросов различных отраслей промышленности и сельского хозяйства. Насыщение ими биосферы может привести к необратимым последствиям ввиду их многопланового отрицательного воздействия на живые организмы /1/.

В настоящей работе проведен сравнительный анализ деградации СПАВ различной химической природы культурой рода Erwinia /2/, выделенной нами

ранее из сточных вод меховых предприятий. Объектами исследования являлись неионогенные (Превоцелл W-OF-7, Wetter HAC) и анионактивные СПАВ (Гамма, De-Sol-A).

Превоцелл W-OF-7 представляет собой продукт оксиэтилирования технических жирных спиртов. По внешнему виду воскообразная масса белого цвета, устойчив к жесткой воде, а также в кислых и щелочных растворах.

Wetter HAC - 100% активный, неионогенный, смачивающий агент, усиленный специальными бактерицидами и фунгицидами. На вид светло-янтарная, немного вязкая жидкость, растворимость неограниченная.

De-Sol-A – анионактивное, низкорастворимое моющее средство, на вид представляет собой белую пасту с рН 8-8,5 (1% раствор).

Гамма – многокомпонентная система, состоящая из поверхностно-активных веществ, органического растворителя и специальных добавок на основе циклических терпенов. Прозрачная жидкость со слабым характерным запахом; рН 1%-ного раствора 6,5-8,0/3/.

Основная среда для культивирования включала $(\Gamma/дм^3)$: NaH₂PO₄ – 1,0; NH₄NO₃ – 1,0; NaCl – 0,5; MgCl₂ - 0,1. В качестве единственного источника углерода и энергии в среду вносили один из исследуемых СПАВ в концентрации 0,5 г/дм³. Посевная доза составляла 10³-10⁴ кл/см³. Инкубирование проводили при $(37\pm0.5)^{0}$ С в 0,5 дм³ колбах Эрленмейера на круговой качалке со скоростью вращения 250 об/мин в течение 96 ч. Степень вовлечения СПАВ в конструктивный и энергетический обмен оценивали по изменениям интенсивности ИК-спектров и динамики изменения их концентрации в процессе культивирования. Наибольшая степень деградации была характерна для неионогенных СПАВ и составила 85% (для Превоцелл W-OF-7) и 60% (для Wetter HAC). Степень деструкции анионактивных СПАВ составила менее 30%. Для подтверждения полученных данных был проведен спектральный анализ.

ИК-спектроскопия – интегральный метод исследования, дающий информацию практически обо всех элементах сложной молекулы СПАВ. В ИК-спектре исследуемых поверхностно-активных веществ в об-

ласти высоких валентных колебаний средней интенсивности появлялись полосы поглощения в диапазоне 3360-3420 см⁻¹, которые можно было бы отнести к валентным колебаниям ассоциированной гидроксильной группы либо связанной NH2...N-группы, что по литературным данным составляет 3550-3200 см-1 и 3350 см⁻¹ соответственно /4/. В области низких частот наблюдались интенсивные характеристические узкие пики в диапазоне 1490 см⁻¹ и 1500 см⁻¹, что вероятно объясняется наличием бензольного кольца (по литературным данным – 1600, 1580, 1500, 1450 см⁻¹). Второй пик ароматического кольца в процессе культивирования сильно уменьшался и смещался в низкочастотную область с 1490 до 1410 см⁻¹, что свидетельствовало о накоплении биомассы в процессе жизнедеятельности микроорганизмов.

В течение всего периода культивирования для неионогенных СПАВ наблюдалось уменьшение интенсивности пиков примерно на 50%. Это, вероятно, можно объяснить их частичной деструкцией, вовлечением в конструктивно-энергетический обмен и снижением концентрации в культуральной жидкости.

Таким образом, культура рода Erwinia обладала наибольшей деструктивной активностью по отношению к неионогенным СПАВ (Превоцелл W-OF-7, Wetter HAC), степень деградабельности которых составила более 60%.

СПИСОК ЛИТЕРАТУРЫ

- 1. Цыцыктуева Л.А. Охрана вод в Байкальском регионе: проблемы, подходы, теория и практика. Улан-Удэ: Изд-во БНЦ СО РАН, 2001. 117 с.
- 2. Определитель бактерий Берджи / Хоулт Дж., Григ Н., Снит П. и др. 9 изд. М.: Мир, 1997. 784 с.
- 3. Горячев С.Н., Григорьев Б.С. Химические материалы в технологии обработки мехового сырья. М.: Изд. дом «Меха Мира», 1999. 106 с.
- 4. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений. М.: Высш. шк., 1984. 336 с.

МЕТОД ПРОЕКТОВ КАК СПОСОБ РАЗВИТИЯ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Ротарь О.В., Искрижицкий А.А. Томский политехнический университет

Современная ситуация, сложившаяся в отношении между обществом и окружающей средой, отличается сложностью и противоречивостью: с одной стороны – негативное воздействие на окружающую природную среду человека в виде возрастающего потребления природных ресурсов, с другой стороны – острота ситуации не учитывается. Как строить образовательный процесс, какие принципы должны быть положены в основу образовательной модели экологического обучения – это те проблемные вопросы, решение которых определяет формирование конкретной модели и методов экологически образовательной деятельности учащихся. Необходим качественно новый подход к экологическому образованию и воспитанию, целью которого должно стать обучение осмысленно-

му пониманию природы и бережному отношению к ней. Воспитать гармонически развитую, экологически подготовленную личность, которая была бы способна опираться на идеи коэволюции природы и общества, устойчивого развития биосферы — задача, стоящая перед педагогами.

Одной из форм обучения в настоящее время чаще всего обсуждается «проектирование» или «проектная деятельность». Данная форма обучения успешно внедрена нами в курсе преподавания обшей экологии и основ экологии. Проектная деятельность (проектирование) — это выполнение учебного проекта для обобщения и интеграции знаний, полученных за весь период обучения; это организованная и целенаправленная деятельность, результатом которой является получение новой информации. Обучение на основе метода проектов состоит из нескольких этапов:

- 1. Определение темы, цели и задачи проекта, подбор участников проекта.
- 2. Творческий поиск идей решения задач проекта
- 3. Получение ожидаемого результата и его оценка.

Созданный на базе Томского политехнического университета (кафедра технологии основного органического синтеза) и Центра допрофессионального образования учащихся «Планирование карьеры» химико-экологический профиль позволяет не только повысить уровень экологического образования и воспитания студентов и школьников, но также способствует вовлечению молодежи в решение экологических проблем региона. Нами разработана программа, в которой предлагаем модульную концепцию преподавания химии, считая, что главная её цель - раскрыть содержание химической науки и её методов, законов химии, которые помогают учащимся сквозь призму химических знаний здраво оценить экологическую ситуацию и найти выход из неё. Исходя из того, что существующей парадигмой образования является «познание мира», а студент или школьник рассматривается как объект воздействия, то мы рассматриваем учащихся как субъект воздействия, который может изменить мир. На передний план выдвигается идея саморазвития личности, для которой определяющими становятся морально-этические принципы. Экологическое образование в данном случае ориентировано на раскрытие потенциальных неповторимых способностей учащихся. Именно поэтому в созданном блоке «Школа- ВУЗ - Профессиональная деятельность» создана такая модель образования, в основе которой лежит естественно - научная предметная интеграция и теория преобразующей практики.

На кафедре технологии основного органического синтеза (ТООС ТПУ) школьники принимают непосредственное участие в научно-исследовательской деятельности вместе со студентами. Профиль работает уже несколько лет. Результатом работы является выполнение следующих проектов:

- 1. Утилизация отходов коксохимического сырья
- 2. Получение фоточувствительного материала
- 3. Изучение адгезии полимеров к металлам (на примере металлических труб для городского водоснабжения)