Возможно, существуют различные варианты решения этого вопроса. Но опыт выживания и разум подсказывают путь через общину, общий труд. Через расширение понятия семьи на всех окружающих, на всю страну, на весь необъятный Космос.

Сегодня это почти иллюзия, но большое начинается с малого. Люди, избравшие жизнь, создают общины, в которых отношения складываются по принципу семьи. Семья – это, прежде всего сердечность в отношениях, творчество красоты во благо ближних, радость от необходимости быть кому - то полезным. В России одним из таких замечательных экологических поселений является община, которая живет и развивается в Курагинском районе Красноярского края, где уже более 12 лет люди проходят трудную школу жизни в любви и гармонии друг с другом и Природой, школу служения друг другу. Здесь расцвет человека происходит на основе раскрытия его духовных качеств, и закладываются основы, благодаря которым будущее человечество поменяет гибельный для планеты курс технической цивилизации. В связи с этим хотелось бы отметить, что и Е И Рерих указывала на Сибирь, как центр будущей цивилизации плане-

ЧИСЛЕННЫЙ АНАЛИЗ РЕШЕНИЯ ПОЛУЭМПИРИЧЕСКОГО УРАВНЕНИЯ ПРИ РАЗЛИЧНЫХ ГРАНИЧНЫХ УСЛОВИЯХ

Семенчин Е. А., Стефанова Н. Г.

Кубанский государственный университет, Краснодар

Ставропольский государственный университет, Ставрополь

Рассмотрим численное решение полуэмпирического уравнения турбулентной диффузии:

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} - w \frac{\partial q}{\partial z} = \frac{\partial}{\partial x} K_x \frac{\partial q}{\partial x} +
+ \frac{\partial}{\partial y} K_y \frac{\partial q}{\partial y} + \frac{\partial}{\partial z} K_z \frac{\partial q}{\partial z} + f$$
(1)

Для уравнения (1) должны быть заданы начальное условие

$$q(t_0, x, y, z) = \mathbf{j}(x, y, z)$$
 (2)

и граничные условия:

$$\frac{\partial q}{\partial z} = 0 \text{ при } z = 0, \tag{3}$$

если примесь полностью отражается подстилающей поверхностью;

$$q(t, x, y, z) = 0$$
 при $z = 0$ (4)

если примесь полностью поглощается подстилающей поверхностью

и

$$q(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (5)

Преобразуем полуэмпирическое уравнение (1) к следующему виду:

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} [a_x q] + \frac{\partial}{\partial y} [a_y q] + \frac{\partial}{\partial z} [a_z q] =
= \frac{\partial^2 (K_x q)}{\partial x^2} + \frac{\partial^2 (K_y q)}{\partial y^2} + \frac{\partial^2 (K_z q)}{\partial z^2} + f$$
(6)

$$a_x = u + \frac{\partial K_x}{\partial x}, a_y = \frac{\partial K_y}{\partial y}, a_z = -w + \frac{\partial K_z}{\partial z}$$
 (7)

Краевая задача (1) – (4) описывает два принципиально различных физических процесса, один из которых является процессом переноса субстанции с ее сохранением вдоль траектории под действием ветра и силы тяжести, и описывается задачей:

1)
$$\frac{\partial q_1}{\partial t} = -\frac{\partial}{\partial x} [a_x q_1] - \frac{\partial}{\partial y} [a_y q_1] - \frac{\partial}{\partial z} [a_z q_1], \tag{8}$$

$$q_1(t_j, x, y, z) = \begin{cases} j(x, y, z), j = 0; \\ q_2(t_j, x, y, z), j = 1, 2, \dots, \end{cases}$$
(9)

$$q_1(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (10)

Второй физический процесс связан с диффузией примеси в процессе распространения и описывается задачей:

$$2)\frac{\partial q_2}{\partial t} = \frac{\partial^2 (K_x q_2)}{\partial x^2} + \frac{\partial^2 (K_y q_2)}{\partial y^2} + \frac{\partial^2 (K_z q_2)}{\partial z^2} + f , \quad (11)$$

$$q_2(t_i, x, y, z) = q_1(t_{i+1}, x, y, z),$$
 (12)

$$\frac{\partial q_2}{\partial z} = 0 \text{ при } z = 0, \tag{13}$$

$$q_2(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (14)

С помощью методов теории расщепления [2] задача (8) - (10) переноса примеси редуцируется в свою очередь на каждом интервале разбиения $[t_i, t_{i+1}], i = 0,1,...$, временного интервала $[t_0,T]$, (причем временной интервал выбирается достаточно малым, чтобы свести до минимума возможную погрешность расщепления), к последовательному решению следующих залач:

1.1) перенос примеси вдоль оси ОХ:

$$\frac{\partial q_{11}}{\partial t} = -\frac{\partial}{\partial x} \left[a_x q_{11} \right],\tag{15}$$

$$q_{11}(t, x, y, z) = q_1(t_0, x, y, z), t \in [t_i, t_{i+1}]$$
 (16)

$$q_{11}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (17)

1.2) перенос примеси вдоль оси ОҮ:

$$\frac{\partial q_{12}}{\partial t} = -\frac{\partial}{\partial y} \left[a_y q_{12} \right],\tag{18}$$

$$q_{12}(t, x, y, z) = q_{11}(t + \Delta t, x, y, z), t \in [t_i, t_{i+1}]$$
 (19)

$$q_{12}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (20)

1.3.) перенос примеси вдоль оси ОZ:

$$\frac{\partial q_{13}}{\partial t} = -\frac{\partial}{\partial z} \left[a_z q_{13} \right],\tag{21}$$

$$q_{13}(t, x, y, z) = q_{12}(t + \Delta t, x, y, z), t \in [t_i, t_{i+1}]$$
 (22)

$$q_{13}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0, (23)$$

где Δt - шаг дискретизации по времени.

Задача диффузии примеси (11) - (14) расщепляется на три последовательно решаемых задачи [2]:

2.1.) диффузия примеси вдоль оси ОХ:

$$\frac{\partial q_{21}}{\partial t} = \frac{\partial^2 (K_x q_{21})}{\partial x^2} , \qquad (24)$$

$$q_{21}(t, x, y, z) = q_{12}(t, x, y, z),$$
 (25)

$$\frac{\partial q_{21}}{\partial z} = 0 \text{ при } z = 0, \tag{26}$$

$$q_{21}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (27)

2.2.) диффузия примеси вдоль оси ОҮ:

$$\frac{\partial q_{22}}{\partial t} = \frac{\partial^2 \left(K_y q_{22} \right)}{\partial y^2} , \qquad (28)$$

$$q_{22}(t, x, y, z) = q_{21}(t + \Delta t, x, y, z),$$
 (29)

$$\frac{\partial q_{22}}{\partial z} = 0 \text{ при } z = 0, \tag{30}$$

$$q_{22}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (31)

2.3.) диффузия примеси вдоль оси ОZ:

$$\frac{\partial q_{23}}{\partial t} = \frac{\partial^2 (K_z q_{23})}{\partial z^2} , \qquad (32)$$

$$q_{23}(t, x, y, z) = q_{22}(t + \Delta t, x, y, z), \qquad (33)$$

$$\frac{\partial q_{23}}{\partial z} = 0 \text{ при } z = 0, \tag{34}$$

$$q_{23}(t, x, y, z) \to 0, \ x^2 + y^2 + z^2 \to \infty, \ z \ge z_0$$
 (35)

Решение краевых задач (15) – (35) осуществляется путем аппроксимации

по формулам численного дифференцирования. Получающиеся при этом системы разностных уравнений решаются методом прогонки.

Рассмотрим численное решение первой задачи (15) - (17).

Запишем явную разностную схему:

$$\frac{\partial q_{11}}{\partial t} = -\frac{\partial (a_x q_{11})}{\partial x} \,, \tag{36}$$

$$\frac{q_{11i}^{t+1} - q_{11}^{t}}{\Delta t} = -\frac{(a_x q_{11})_{i+1}^{t} - (a_x q_{11})_{i-1}^{t}}{2\Delta x}$$
(37)

Теперь запишем неявную разностную схему:

$$\frac{q_{11_i}^{t+1} - q_{11_i}^t}{\Delta t} = -\frac{(a_x q_{11})_{i+1}^{t+1} - (a_x q_{11})_{i-1}^{t+1}}{2\Delta x}$$
(38)

Находя полусумму явной и неявной схем, получим схему Кранка-Николсона

$$\frac{q_{11i}^{t+1} - q_{11i}^{t}}{\Delta t} = -\frac{1}{4\Delta x} ((a_x q_{11})_{i+1}^{t} - (a_x q_{11})_{i-1}^{t} + (a_x q_{11})_{i+1}^{t+1} - (a_x q_{11})_{i-1}^{t+1})$$
(39)

преобразуем (39):

$$-\frac{\Delta t(a_x)_{i-1}^{t+1}}{4\Delta x}(q_{i-1}^{t+1}) + q_i^{t+1} + \frac{\Delta t(a_x)_{i+1}^{t+1}}{4\Delta x}(q_{i+1}^{t+1}) = \frac{\Delta t(a_x)_{i-1}^{t+1}}{4\Delta x}q_{i-1}^{t+1}$$

$$= -\frac{\Delta t(a_x)_{i-1}^{t+1}}{4\Delta x}q_{i-1}^{t+1}$$
(40)

Для решения системы (40) эффективен метод прогонки, суть которого в следующем:

Пусть
$$A_i = -\frac{\Delta t(a_x)_{i-1}^{t+1}}{4\Delta x}$$
 , $C_i = 1$, $B_i = \frac{\Delta t(a_x)_{i+1}^{t+1}}{4\Delta x}$,

 $r_i = q_i^t - \frac{1}{4\Delta x}((a_x q)_{i+1}^t - (a_x q)_{i-1}^t)$, тогда (40) запишем в

$$A_i q_{i-1} + C_i q_i + B_i q_{i+1} = r_i, (i=0,1,2,...m)$$
 (41)

Проведем линейную интерполяцию q_i :

$$q_i = k_{i+1}q_{i+1} + b_{i+1}, (i = 0,1,2,....m-1)$$
 (42)

$$q_{i-1} = k_i q_i + b_i = k_i (k_{i+1} q_{i+1} + b_{i+1}) + b_i = k_i k_{i+1} q_{i+1} + k_i b_{i+1} + b_i$$
(43)

подставляя (42) и (43) в (41) получим:

$$A_i k_i k_{i+1} q_{i+1} + A_i k_i b_{i+1} + A_i b_i + C_i k_{i+1} q_{i+1} +$$

$$+C_{i}b_{i+1}+B_{i}q_{i+1}=r_{i}$$

разделим (44):

$$\begin{cases} A_i k_i k_{i+1} + C_i k_{i+1} + B_i = 0 \\ A_i k_i b_{i+1} + A_i b_i + C_i b_{i+1} - r_i = 0, \end{cases}$$
(44)

где $q_{i+1} \neq 0$.

Отсюда находим k_{i+1} , b_{i+1} :

$$k_{i+1} = -\frac{B_i}{A_i k_i + C_i}, \ b_{i+1} = \frac{r_i - A_i b_i}{A_i k_i + C_i}$$
 (45)

Примем $\kappa_0=0$ и $b_0=0$. Рассчитаем все значения k_i , b_i . Теперь можно выполнить обратную прогонку: по значениям k_{i+1} , b_{i+1} вычислим все значения q_i , положив $q_m=0$.

Аналогично можно найти решение остальных задач (18) — (35), определяющих распространение примеси вдоль осей ОХ и ОZ, учитывая, что для уравнений второго порядка коэффициенты A_i , C_i , B_i , r_i будут иметь вид:

$$\begin{split} A_i &= -\frac{\Delta t(k_x)_{i-1}^{t+1}}{2(\Delta x)^2} \,, \quad C_i = \frac{\Delta t(k_x)_i^{t+1}}{(\Delta x)^2} \,, \\ B_i &= -\frac{\Delta t(k_x)_{i+1}^{t+1}}{2(\Delta x)^2} \\ r_i &= q_i^t + \frac{\Delta t}{2(\Delta x)^2} (k_x q)_{i+1}^t - \frac{\Delta t}{(\Delta x)^2} (k_x q)_i^t) \,+ \\ &+ \frac{\Delta t}{2(\Delta x)^2} (k_x q)_{i-1}^t \end{split}$$

Тогда приращение решения исходного уравнения (6) запишется как сумма приращений решений каждого из уравнений (15) – (35).

Данная задача сводится к выяснению вопроса о необходимости задания граничных условий для тех или иных случаев.

без усл.	отражение	поглощение	без усл.	отражение	поглощение	без усл.	без услов.	отражение	поглощение
1 сек.	1 сек.	1 сек.	6 сек.	6 сек.	6 сек.	12 сек.	46 сек.	46 сек.	46 сек.
0	0	0	0	0	0	0	0	0	(
1,31	1,31	1,31	1,79	1,79	1,79	0,62	3,62E-05	3,39E-05	1,29E-05
2,63	2,63	2,63	3,59	3,59	3,59	1,24	7,24E-05	6,77E-05	2,16E-0
3,93	3,93	3,93	5,39	5,39	5,39	1,86	0,0001	0,0001	3,89E-0
5,25	5,25	5,25	7,19	7,19	7,19	2,48	0,00014	0,00013	5,19E-0
6,56	6,56	6,56	8,99	8,99	8,99	3,09	0,00018	0,00016	6,49E-0
7,88	7,88	7,88	10,78	10,78	10,78	3,72	0,00021	0,00017	7,79E-0
9,19	9,19	9,19	12,58	12,58	12,58	4,34	0,00025	0,00024	9,09E-0
10,5	10,5	10,5	14,38	14,38	14,38	4,96	0,0003	0,00027	0,000
11,81	11,81	11,81	16,18	16,18	16,18	5,57	0,00032	0,0003	0,00012
13,13	13,13	13,13	17,97	17,97	17,97	6,19	0,00036	0,00034	0,00013
14,44	14,44	14,44	19,77	19,77	19,77	6,81	0,0004	0,00037	0,00014
гы. Пуст	гь граничн	м приведенн ые условия і Коши (1) - (не учиты		$\frac{\partial U}{\partial t} = V$ $\frac{\partial V}{\partial V} = -V$	$\frac{\partial}{\partial z}K\frac{\partial}{\partial z}K\frac{\partial}{\partial z}$	$\frac{\partial U}{\partial z}$ $\frac{\partial}{\partial z} K \frac{\partial V}{\partial z}$		

Таблица 1. Зависимость концентрации примеси от времени

источника, наблюдается возрастание концентрации с 1,31 кг/м³ до 1,79 кг/м³ (см. строку № 2 таблицы 1); в течение 12c. – 46c. - уменьшение с $0.62 \text{ кг/м}^3 - 3.62\text{E}$ 05 kg/m^3 .

Аналогичные результаты изменения концентрации до 46с. имеем также в случае, когда граничные условия (3), (4) в задаче (1) - (4) учитываются.

После 46с., с момента действия источника, наблюдается значительное расхождение значений концентрации q для задач (1) - (2) и (1) - (4). Без учета граничных условий: с 3.62E-05 кг/м³ до 0 кг/м³ ,с учетом этих же условий: а) поглошение с 1.29Е- 05 кг/м³ до 0 кг/ M^3 , б) отражение с 3,39E- 05 кг/ M^3 до 0 кг/ M^3 .

Программная реализация вышеописанного численного решения полуэмпирического уравнения турбулентной диффузии позволяет сделать вывод, что значения концентраций рассеяния примеси, полученные в результате расчетов в момент выброса ее в атмосферу, при задании граничных условий и без учета их имеют существенные различия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Марчук Г. И. Математическое моделирование в проблеме окружающей среды. - М.: Наука, 1982. -320 c.
- 2. Марчук Г. И. Методы расщепления. М.: Наука, 1988. – 264 с.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗНАЧЕНИЙ МАСШТАБА И КИНЕТИЧЕСКОЙ ЭНЕРГИИ ТУРБУЛЕНТНОСТИ В АТМОСФЕРЕ

Семенчин Е.А., Кунижев С.М. Ставропольский государственный университет, Ставрополь

Математическая модель приземного слоя атмосферы представляет собой замкнутую систему уравнений, записанных в безразмерном виде:

$$\begin{cases}
\frac{\partial U}{\partial t} = V + \frac{\partial}{\partial z} K \frac{\partial U}{\partial z} \\
\frac{\partial V}{\partial t} = -(U - 1) + \frac{\partial}{\partial z} K \frac{\partial V}{\partial z} \\
\frac{\partial q}{\partial t} = a_H \frac{\partial}{\partial z} K \frac{\partial q}{\partial z} \\
b = \frac{a_D c^{\frac{1}{4}}}{2r^2} \frac{dl}{dt} \\
l = cR_0^{-1} (b(t, z) - b(t, R_0^{-1})) + c \int_{R_0^{-1}}^{z} \left(\frac{1}{b(t, z)} - \frac{1}{b(t, t)} \right) dt \\
K = lb \\
e = \frac{b^3}{l}
\end{cases}$$
(1)

с заданными краевыми условиями

$$\begin{split} &U_{z=z_0}=0; &U_{z\to\infty}\to G;\\ &U_{z=z_0}=0; &U_{z\to\infty}\to 0;\\ &q_{z=z_0}=q_{00}+q_m\sin wt; &q_{z\to\infty}\to q_{00};\\ &\frac{\partial b^2}{\partial z}\bigg|_{z=z_0}=0; &b^2\bigg|_{z\to\infty}\to 0;\\ &l\bigg|_{z=z_0}=0, \end{split} \tag{2}$$

где U,V – проекции скорости единичной массы воздуха на горизонтальной оси координат Ох,Оу,

q - потенциальная температура,

 b^2 -величина, пропорциональная средней кинетической энергии турбулентности,

l - масштаб турбулентности,

K - коэффициент турбулентного обмена,

е - средняя скорость диссипации,

 R_0 – число Россби,

$$a_D = \frac{K_D}{K_M}$$
 - отношение коэффициента турбу-

лентного обмена для примеси и коэффициента турбулентного обмена для импульса,