рель), в период максимальной длительности дня (конец мая – июнь) и в период регрессивного уменьшения светлой части суток (ноябрь). Показатели лизосомальной активности Мн (ЛАМ) были минимальны в период максимальной длительности светового дня (конец мая – июнь) и максимальны – в период стабильного уменьшения длительности световых суток и в период их минимальной величины (сентябрь – октябрь и декабрь, соответственно). Кроме того, снижение ЛАМ наблюдалось в период стабильного увеличения длительности светового дня (февраль – апрель).

Процент НСТ-активных Нф и Мн у спортсменов был максимальным в период минимальных значений длительности дня (декабрь) и минимальным – в период стабильного приращения длительности светлой части суток (февраль – апрель). В отличие от динамики содержания НСТ-активных Нф, показатели НСТ-Мн у спортсменов были достоверно сниженными и в период минимальных значений длительности светлой части суток (конец мая - июнь). Содержание Ерозеткообразующих Лф у спортсменов было достоверно сниженным только в период интенсивного увеличения длительности светлой части суток (январь февраля). Процентное содержание розеткообразующих Лф имело выраженные полугодовые противоположно направленные изменения: максимальные значения отмечались в период регрессивного уменьшения светлой части суток (ноябрь), а минимальные - в период снижения приращения светового дня (май).

Результаты двухфакторного дисперсионного анализа, в котором осуществлялось сопоставление влияния вида спортивно-тренировочной деятельности (фактор 1 – борьба и лыжные гонки) и периода годового цикла (фактор 2) спортсменов столь различных видов спорта позволили констатировать большую значимость влияния на фагоцитарную, лизосомальную и НСТ-активность Нф и Мн крови фактора сезонности по сравнению с влиянием, обусловленным различиями в двигательной деятельности. Таким образом, полученные данные свидетельствуют о том, что при подготовке спортсменов необходимо учитывать влияние сезонных факторов среды на состояние организма.

Изменение уровня молекул средней массы при внутриутробном инфицировании плода

Коляченко Е.С., Михайлов А.В., Чеснокова Н.П. Саратовский государственный медицинский университет, кафедры акушерства и гинекологии ФПК ППС и патофизиологии, Саратов

Значительный рост перинатальной заболеваемости и смертности, связанной с врожденной инфекционной патологией плода, диктует необходимость расширения комплексного диагностического подхода к прогнозированию и профилактике внутриутробного инфицирования плода (ВУИ).

В последние годы для оценки степени выраженности эндогенной интоксикации используется определение молекул средней массы (МСМ) в крови. Как известно, МСМ – это гетерогенная группа соедине-

ний, включающая в себя олигопептиды с высоким содержанием дикарбоновых аминокислот, цистеина, лизина, глицина, продукты деградации сывороточных белков, в частности, β -цепи фибриногена и β 2-микроглобулина, углеводные компоненты, соединения с глюкуроновой кислотой, олигосахара и др.

Одной из главных задач является исследование уровня процессов эндогенной интоксикации у женщин, течение беременности которых осложнилось внутриутробным инфицированием плода, для последующего использования в качестве объективного критерия оценки эффективности терапии и прогнозирования течения беременности у беременных групп риска по возникновению указанной патологии.

Проведено клинико-лабораторное обследование 60 женщин из групп риска по возникновению ВУИ плода. Первую группу наблюдения составили 30 женщин, у которых родились здоровые дети, во вторую группу (основную) были включены 30 женщин, у которых родились дети с клиническими признаками внутриутробной инфекции. Клиническое обследование женщин включало изучение общего и акушерского статуса.

Из особенностей клинического течения беременности у женщин с ВУИ плода отмечены более частое возникновение ОРЗ, неоднократное развитие угрозы прерывания беременности, а также ранний и поздний токсикозы. Аномалии количества околоплодной жидкости выявлены у женщин с ВУИ плода в 3 раза чаще. Нарушение фетоплацентарного кровотока по данным допплерометрии встречалось у половины всех женщин с внутриутробной инфекцией плода.

Проведенное параллельно исследование уровня МСМ позволило выявить резкое увеличение этого показателя, коррелирующее с нарушением фетоплацетарного кровотока в большинстве наблюдений. В тоже время в группе сравнения у беременных с неосложненным внутриутробной инфекцией течением беременности, содержание МСМ было достоверно ниже таковых показателей вышеуказанной основной группы наблюдения. Последнее делает очевидной возможность использования определения уровня МСМ в крови в комплексной оценке тяжести течения беременности, осложненной внутриутробным инфицированием плода.

Изменение реологических свойств крови и антитромбогенной активности сосудистой стенки при хроническом холецистите

Коньков А.В.

Военно-медицинский институт, Саратов

Цель исследования: изучение реологических свойств крови, функциональной активности эритроцитов и состояния тромбоцитарно-сосудистого звена гемостаза у больных хроническим бескаменным и хроническим калькулезным холециститом.

Показатели системы гемостаза и гемореологии изучены у 140 больных хроническим бескаменным холециститом (ХБХ), 90 больных хроническим калькулезным холециститом (ХКХ) и у 30 практически здоровых лиц (контрольная группа). Пациенты с ХБХ

были разделены на группы в зависимости от типа дискинезии желчевыводящих путей (ДЖП). Больные XKX были обследованы в период ремиссии при отсутствии клинических и лабораторных проявлений обострения хронического воспалительного процесса желчевыводящих путей. Реологические свойства крови: вязкость крови при заданной скорости сдвига, индекс агрегации эритроцитов (ИАЭ) и индекс деформируемости эритроцитов (ИДЭ) - изучались с помощью анализатора крови реологического АКР-2. Агрегацию тромбоцитов при помощи лазерного анализатора агрегации. Антитромбогенная активность сосудистой стенки изучена с помощью манжеточной пробы (Балуда В.П. с соавт., 1992).

У больных ХБХ с гипермоторной ДЖП отмечено повышение вязкости крови при низкой скорости сдвига (20 1/с), в группе больных ХБХ с ДЖП по гипомоторному типу и ХКХ повышение вязкости - при всех скоростях сдвига, достоверно более значимое при ХКХ (р<0,05 по сравнению со значениями в группе больных ХБХ). Агрегационная способность эритроцитов у больных ХБХ и ХКХ была повышена, причем в большей степени у пациентов с ХКХ (p<0,05 по сравнению со значениями в группе больных ХБХ), тогда как деформируемость мембран эритроцитов не изменялась. При неизменном гематокритном числе по сравнению с гематокритом доноров у больных ХБХ с ДЖП по гипомоторному типу показатель эффективности доставки кислорода тканям понижался (p<0.05). а при ХБХ с ДЖП по гипермоторному типу оставался в пределах контрольных значений. Наиболее выраженное снижение степени доставки кислорода тканям зарегистрировано у больных XKX (p<0,05 по сравнению со значениями в группе больных ХБХ).

Со стороны сосудистой стенки у обследованных больных отмечено нарушение антитромбогенных свойств сосудистого эндотелия: снижение его антиагрегационной, антикоагулянтной и фибринолитической функций, что было достоверно более значимо у больных ХКХ (р<0,05 по сравнению со значениями в группе больных ХБХ) и коррелировало с нарастанием литогенного индекса желчи. Можно предположить, что снижение антитромбогенной активности сосудистой стенки у обследованных больных является частным проявлением нарушения многочисленных функций эндотелия, в том числе обеспечивающих реологический контроль. При угнетении антитромбогенной активности эндотелия усиливается агрегация эритроцитов. Таким образом, роль дисфункции сосудистой стенки в нарушении гемореологии при хроническом холецистите становится достаточно очевидной.

Таким образом, в формировании хронического холецистита, определенную роль играет нарушение микроциркуляции в виде патологической агрегации эритроцитов и снижения эффективности доставки кислорода тканям. Можно с большой долей вероятности предположить, что ухудшение реологических свойств крови в виде повышения ее вязкости и агрегации эритроцитов в микроциркуляторном русле способствуют нарушению оксигенации желчного пузыря, усугублению метаболических нарушений и воспалительного процесса.

Характеристика временных свойств человека (физиологические аспекты)

Корягина Ю.В., Малко А.И., Бугаева Н.А., Колбасюк И.И.

Сибирский государственный университет физической культуры и спорта, Омск

В настоящее время в нет единого мнения в вопросе о физиологических механизмах восприятия временных интервалов человеком. Поэтому целью исследования явилось изучение процессов восприятия времени у человека при занятиях специфической деятельностью (занятия спортом). Было обследовано 500 спортсменов, занимающихся различными видами спорта. Определялись: точность восприятия времени и пространства с помощью компьютерной программы Time trainer, которая включает задания на оценивание и отмеривание звуковых и зрительных сигналов, воспроизведение ритма сигналов. Также определялись индивидуальная единица времени с помощью компьютерной программы "звуковой тест" (по методике Б. И. Цуканова, 2000), длительность индивидуальной минуты (ИМ) (Н.И. Моисеева с соавт., 1985), время прямой и перекрестной реакции на свет и звук, сила нервных процессов (теппинг-тест по методике Е.П. Ильина) определялись с помощью компьютерной программы "Определитель индивидуального профиля функциональных асимметрий мозга" (Е.В. Фомина, 2000).

Исследование точности восприятия времени у спортсменов различных специализаций показало, что задания на оценивание и отмеривание временных интервалов наиболее точно выполняли спортсмены, специализирующиеся в хоккее, боксе, восточных единоборствах, велоспорте и шейпинге.

Наибольшие ошибки при восприятии времени допускали пловцы, борцы, футболисты, тяжелоатлеты, лыжники и лица, занимающиеся физической культурой.

Исследование длительности индивидуальной единицы времени показали, что среди спортсменов различных специализаций наиболее короткая индивидуальная единица времени отмечена у лыжников (0.76 ± 0.02) , затем в порядке ее возрастания следуют: велосипедисты и конькобежцы (0,817±0,01), гимнасты (0.83 ± 0.01) , футболисты (0.83 ± 0.01) , хоккеисты (0.831 ± 0.02) , борцы (0.84 ± 0.01) , легкоатлеты (0.86 ± 0.013) и тяжелоатлеты (0.87 ± 0.009) . По данным Б.И. Цуканова длительность индивидуальной единицы времени в человеческой популяции колеблется от 0,7 до 1,1 с. Полученные данные свидетельствуют, что спортсмены, по показателям индивидуальной единицы времени относятся к среднегрупповым "спешащим" субъектам. Длительность ИМ у исследованных спортсменов колебалась в пределах от 59 до 61 секунд. Значительное влияние на длительность индивидуальной минуты оказывают половые особенности спортсменов, у девушек во всех группах длительность ИМ меньше, чем у юношей, это свидетельствует о том, что время у девушек течет медленнее по сравнению с юношами.

Время двигательной реакции является одним из важнейших временных свойств и лимитирует резуль-