Удк 616.-001.36-02:616.94-092

Роль регуляторных пептидов в механизмах повреждения центральной нервной системы при эндотоксемии

Н.Г. Харланова, Ю.М. Ломов, Э.А. Бардахчьян

Научно-исследовательский противочумный институт, Ростов-на-Дону, Россия

Патогенез грамотрицательного септического шока рассматривается с позиций нового класса пептидов - цитокинов, инициирующих и опосредующих токсичность молекулы липополисахарида. В механизмах церебральных расстройств при септицемии цитокины считаются ключевыми медиаторами, т.к. головной мозг, наряду с другими органами, является местом активного их синтеза. Считается, что основа будущих неврологических расстройств при эндотоксемии в эксперименте и клинике формируется вначале на молекулярном уровне и затем проявляется в виде морфологического субстрата на ультраструктурном уровне. При неблагоприятном стечении обстоятельств прогрессирование процесса может привести к развитию клинической картины острой церебральной недостаточности или шокового мозга.

В настоящее время наиболее тяжелым осложнением сепсиса является септический шок (СШ), летальность при котором достигает более 80% [42]. В свете последних данных патогенез грамотрицательного СШ рассматривается с позиций нового класса пептидов - цитокинов, инициирующих и опосредующих токсичность молекулы липополисахарида (ЛПС). Существует мнение, что именно неконтролируемый дисбаланс цитокинов и их ингибиторов является стимулом к развитию СШ [22, 24]. Среди них наиболее важными цитокинами в генезе развития органных повреждений при эндотоксиновом шоке (ЭШ) и СШ являются фактор некроза опухоли-альфа (ФНО-α и интерлейкины (ИЛ-1β и ИЛ-6) [21]. Принципиально, что эти же пептиды индуцируют синтез других медиаторов хемотаксических цитокинов, простагландинов (Пг), лейкотриенов (Лт), адгезионных молекул, окиси азота, протеаз и, по существу, выступают в роли факторов аутокринной регуляции, обуславливая каскадный характер продукции различных биологически активных соединений [25, 35]. Патогенетически значимые цитокины ΦΗΟ-α, ИЛ-1β и ИЛ-6 обладают цитотоксичностью, пирогенными свойствами, стимулируют печень к выработке острофазных белков в том числе, ЛПСсвязывающего белка, маннозосвязывающего белка и амилоида А, образование которых увеличивается в сотни и тысячи раз под воздействием цитокинов [34].

Комплекс взаимодействий между цитокинами и клетками некоторыми авторов рассматривается как цитокиновая сеть и может иметь характер стимуляции или ингибирования [44]. При ЭШ и СШ следствием синтеза этих медиаторов

является нарушение функций сердечно-сосудистой системы, блокада микроциркуляции печени, почек, легких, кишечника, т.е. формирование полиорганной недостаточности, что в большинстве случаев заканчивается смертью [2, 3, 6, 10, 11, 12, 14, 15, 29].

Результаты наших исследований свидетельствует о том, что развитие ЭШ сопровождается повышением проницаемости гематоэнцефалического барьера (ГЭБ) и проникновением в мозг крупных молекулярных соединений [1,4,5, 13]. Характер рецепторно-лигандных взаимоотношений в структурах центральной нервной системы (ЦНС) одинаков для различных лигандов и подтверждается в наших опытах с некоторыми психотропными препаратами [7,8,9]. В пользу проникновения молекул ЛПС через тканевые барьеры свидетельствуют многочисленные данные определения эндотоксина с помощью лимулюс амебоцитного лизата (ЛАЛ-теста) в субстратах от животных и больных при ЭШ и СШ [41].

В механизмах церебральных расстройств при ЭШ цитокины считаются ключевыми медиаторами [22]. Головной мозг, наряду с другими органами, является местом активного синтеза цитокинов [32, 30]. В свою очередь, в мозге цитокины, наряду с эндотоксином, обладают способностью инициировать синтез iNOS — (цитокин-индуцибельной синтазы окиси азота), с последующей продукцией окиси азота (NO) в клетках [32, 45]. Известно, что в ЦНС NO выступает как медиатор нейротоксичности, образует свободнорадикальнй пероксинитрит, и, кроме того, служит нейромодулятором в качестве сигнальной молекулы при нейропередаче и регуляции тонуса сосудов [31].

При септицемии в патогенезе нарушения функций ЦНС особая роль принадлежит ИЛ-1В, которые в эксперименте можно воспроизвести инъекцией экзогенного ИЛ-1β а введение антагонистов к нему полностью нивелирует эти расстройства [45]. Внутрибрющинное или внутривенное введение ЛПС инициирует синтез ИЛ-1β в многочисленных структурах мозга - менингиальных оболочках, хориоидном сплетении, околожелудочковых областях, коре больших полушарий и гипоталамусе, клетках микроглии и макрофагах [38]. Это объясняется синхронным транспортом молекул ЛПС проникающих через ГЭБ и гематоликворный барьер (ГЛБ) из системного кровотока в соответствующие отделы головного мозга. Показано, что при периферическом способе введения эндотоксина, перенос его молекул в хориоидном сплетении и прилежащих структурах происходит в направлении от эпендимных клеток третьего желудочка или таницитов срединного возвышения к нейронам [1, 4, 45]. Одновременно ЛПС, пенетрируя ГЭБ, активирует синтез ИЛ-1β в сосудистых стенках и глии. Интересно, что в ЦНС при септицемии экспрессия генов, кодирующих ИЛ-1β, намного выше экспрессия генов, кодирующих цитокины ИЛ-10, ИЛ-13, которые ингибируют эффекты ИЛ-1β [45].

В микроглии максимальный уровень синтеза ИЛ-1β регистрируется намного позже, чем в нейронах после инъекции эндотоксина [38]. Кроме того, при

внутривенном введении эндотоксина количество ИЛ-1 β позитивных клеток микроглии выше, чем при внутрибрющинном, и обнаруживаются в виде периваскулярного конгломерата, причем ИЛ-1 β чаще регистрируется непосредственно в цитоплазме клеток, а не в эндоплазматическом ретикулуме или аппарате Гольджи. По мнению исследователей, внутривенное введение эндотоксина, инициируя синтез ИЛ-1 β , как бы «маркирует» соседние или удаленные клетки-мишени (нейроны, эндотелиальные клетки, микроглию) [38].

В условиях повышенной проницаемости ГЭБ при ЭШ создаются предпосылки проникновения эндотоксина из сосудов и в астроцитарные отростки [5, 15]. Известно, что астроциты, подобно моноцитам, способны представлять антиген (в данном случае эндотоксин) и являются источником усиленного синтеза ИЛ-1β в мозге [43]. И хотя на астроцитах отсутствует специфический для эндотоксина мембранно-связанный рецептор СД14, связывание ЛПС с клеткой осуществляется с помощью растворимого рецептора СД14 и пока еще не установленного белка, ассоциированного с мембраной [43]. Кроме ИЛ-1β, астроциты синтезируют ряд других цитокинов; добавление ЛПС к культуре мышиных астроцитарных клеток инициирует синтез ФНО-а, ИЛ-1β, ИЛ-6, что приводит к их ультраструктурной перестройке [33]. Антитела к ФНО-а, ИЛ-1β, ИЛ-6 частично ингибируют повреждения астроцитов [27], но если они все же произойдут, то расстройства микроциркуляции усиливаются[26]. Необходимо отметить, что местом активного синтеза медиаторов при эндотоксемии является также и сосудистый эндотелий мозга [18].

В последние годы получены новые данные об эндогенном образовании биологически активных субстанций при ЭШ непосредственно в области сосудистых сплетений [36, 28]. Так, ФНО-α, почти сразу после внутривенного введения эндотоксина начинает синтезироваться в эпендиме и сосудистых сплетениях, а еще через несколько минут регистрируется в цереброспинальной жидкости [36]. У крыс, получавших эндотоксин в дозе 3 мг/100 г, ФНО-α спустя минуты выявляется в области сосудистых сплетений, электронно-микроскопически регистрируется отек эндотелиоцитов и увеличение межклеточных пространств между ними и эпендимоцитами [28]. Авторы полагают, что расстройства ГЭБ, ГЛБ и ликвороэнцефалического барьера, а также отек мозга обусловлены эффектами ФНО-α, транспортирующегося от места активного синтеза (эпендима) к другим структурам мозга.

При внутрицистернальном введении эндотоксина у крыс обнаруживаются лишь временные различия в синтезе цитокинов (ИЛ-1β и ИЛ-6) в коре, гипоталамусе, гиппокампе, полосатом теле и в висцеральных органах [17].

При попадании эндотоксина в спинномозговую жидкость гипоталамическая область и расположенные по соседству сосудодвигательный и дыхательный центры могут стать объектом его воздействия. При раздражении эндотоксином термочувствительных нейронов переднего гипоталамуса и ствола мозга, как

правило, возникает гипертермическая реакция, причем пирогенный эффект реализуется с участием эндогенных пирогенов, в том числе и цитокинов, синтезирующихся в мозге [23]. В частности в опытах на крысах, получавших эндотоксин, методами гибридизации in situ и иммунной цитохимии доказана локализация иммуннореактивного ИЛ-1β в гипоталамусе [23].

Кроме того, ИЛ-1β, секретируемый клетками системы мононуклеарных фагоцитов в ответ к эндотоксину, также участвует в терморегуляции; пирогенная реакция на ЛПС у крыс значительно редуцируется после элиминации периферических макрофагов [19]. Изменение терморегуляции, опосредуемое синтезом цитокинов, зависит и от дозы эндотоксина [37]. По данным исследователей, другим медиатором центрального действия в генезе жара и лихорадки при ЭШ является простагландин ПГЕ2 [16].

Поиск профилактики и лечения функциональных расстройств ЦНС при СШ и септицемии диктуют использование не только антител к ЛПС или цитокинам, но и применение цитокинов-антагонистов [20]. Внутрицистернальное введение мышам ИЛ-10 (75 нг) и ЛПС (2,5 мкг) почти полностью ингибируют продукцию ФНО- α и ИЛ-1 β в мозге. С другой стороны, внутрицистернальное введение антител к ИЛ-10 (JES5-2A5, 60 мкг) потенцирует синтез ФНО- α и ИЛ-1 β [20].

Таким образом, основа будущих неврологических расстройств при эндотоксемии в эксперименте и клинике формируется вначале на молекулярном уровне и затем проявляется в виде морфологического субстрата на ультраструктурном уровне. При неблагоприятном стечении обстоятельств дальнейшее прогрессирование процесса может привести к развитию развернутой клинической картины острой церебральной недостаточности или шокового мозга.

СПИСОК ЛИТЕРАТУРЫ

- Бардахчьян Э.А. Харланова Н.Г. // Физиол. журн.1991. Т. 37.
 № 5.С. 41.
- Бардахчьян Э.А., Харланова Н. Г.// Пат. физиол. 1995. № 1. С 46
- Бардахчьян Э.А., Харланова Н. Г. // Пат физиол. 1997. № 1. С. 17.
- 4. Бардахчьян Э.А., Харланова Н. Г. // Цитология и генетика. 1997. Т. 31. № 1. С. 5.
- Бардахчьян Э.А., Харланова Н. Г., Ломов Ю.М. // Цитология и генетика. 1997.Т. 31. № 6. С. 11.
- 6. Бардахчьян Э.А., Харланова Н. Г., Ломов Ю.М. // Пат. физиол. 1999. № 3.С. 22 .

- Бардахчьян Э.А., Харланова Н. Г., Макляков Ю.С. // Бюлл. экспер. биол. 1996.Т. 122. № 10. С. 457.
- 8. Бардахчьян Э.А., Макляков Ю.С., Каркищенко Н.Н., Харланова Н.Г. // Эксп. клин. фармакол. 1992. Т. 55. № 2. С. 6.
- 9. Бардахчьян Э.А., Макляков Ю.С., Харланова Н.Г., Куликова О.Н. // Нейрохимия. 1992. Т. 11. № 1. С. 72.
- Харланова Н.Г., Бардахчьян Э.А. // Анест. и реаниматол. 1991. № 4. С. 37.
- Харланова Н.Г., Ломов Ю.М., Бардахчьян Э.А. // Анест. реаниматол. 1993. № 2. С. 24.
- 12. (Харланова Н.Г., Ломов Ю.М., Бардахчьян Э.А.) Kharlanova N.G., Lomov Yu.M., Bardakhchian E.A // In: The 4-th Eur. Congr. Cell Biol. 1994. Prague. P. 68.
- Харланова Н.Г., Ломов Ю.М., Бардахчьян Э.А. // Анест. реаниматол. 1994. № 3. С. 36.
- Харланова Н.Г., Ломов Ю.М., Бардахчьян Э.А // Бюлл. экспер. биол. 1995. Т. 120. № 7. С. 107.
- Харланова Н.Г. Закономерности биологического действия эндотоксина Е. coli на ультраструктуру органов-мишеней.: Автореф. дисс. . . . докт биол. наук. М., 2001.
- 16. Bishai I., Coceani F. // Cytokine. 1996. V. 8. N 5. P. 371.
- 17. De Simoni M.G., Del Bo R., De Luigia A., Simard S. // Endocrinology. 1995. V. 136. N 3. P. 897.
- 18. De Vries H.E., Bloom-Roosemalen M.C., de Boer A.G. et al. // J. Pharmac. Exp. Therap. 1996. V. 277. N 3. P. 1418.
- Derijk R.H., Strijbos P.J., van Rooijen N. et al. // Am. J. Physiol. 1993. V. 265. N5. P. 1179.
- 20. Di Santo E., Sironi M., Pozzi P. et al. // Neuroimmunomodulation. 1995. V. 2. N 3. P.149.
- 21. Freudenberg M., Ness T., Kumazawa Y., Galanos C. // Immun. und Infect.1993. V. 21. N 2. P. 40.
- 22. Galanos C. // Shock. 1998. V. 6. N 7. P. 605.
- Hagan P., Poole S., Bristow A. F. // J. Mol. Endocrinol. 1993. V.
 N. 1. P. 31.
- 24. Henderson B. // Microbiol. Rev. 1996. V 60. N 2. P 316.
- 25. Hinshaw L.B. // Crit. Care Med. 1996. V 24 N 6. P. 1072.
- Holash H.A., Noden D.M., Stewart P.A. // Develop. Dyn. 1993.
 V. 197 N 1. P. 14.
- Hu S., Martella A., Anderson W., Chao C. // Uniq. Lab. Invest. 1994. V. 70. N 6. P. 850.

- Liu L., Kita T., Tanaka N., Kinoshita Y. // Intern. J. Exp. Pathol. 1996. V. 77. N 1. P. 37.
- 29. .Parrilo J.E. // N. Engl. J. Med. 1993. V 328. P. 1471.
- Pitossi F., del Rey A., Kabiersch A., Besedovsky H. //J. Neurosci. Res. 1997. V. 48. N. 2. P. 287.
- Pronai L., Szaleczky E., Feher J. // Orvosi Hetilap. 1996. V. 137.
 N. 31. P. 1699.
- Romero L.I., Tatro J.B., Field J.A., Reichlin S. //Am. J. Physiol. 1996. V. 270. N 2. P. 326.
- Sharif S.F., Hariri R.J, Chang V.A. et al. // Neurol. Res. 1993. V.
 N 2. P. 109.
- 34. Staudinger T., Presterl E., Graninger W. et al. // Intens. Care Med. 1996. V. 22. N 9. P. 888.
- Sutton E.T., Norman J.G., Newton C.A. et al. // Shock. 1997. V.
 N 2. P. 105.
- 36. Tarlow M.J., Jenkins R., Comis S.D. et al // Neuropathol. Appl. Neurobiol. 1993. V. 19. N 4. P. 324.
- 37. Tilders F.J., DeRijk R.H., Van Dam A.M. et al. //Psychoneuroendocrinology. 1994. V. 19. N. 2. P. 209.
- 38. Van Dam A.M., Bauer J., Tilders F.J., Berkenbosch F. // Neuroscience. 1995. V. 65. N 3. P. 815.
- van Dam A.M., Brouns M, Man-A-Hing W, Berkenbosch F. // Brain Res. 1993. V. 613. N 2. P. 231.
- Wang J., Kester M., Dunn M.J. // Biochem. Biophys. Acta. 1988.
 V. 69. N 3. P. 217.
- Williams A.E., Blakemore W.F. // J. Infect. Dis. 1990. V. 162. N 2. P. 478.
- Wang Y., Hollingsworth R.I. // Biochemistry. 1996. V. 35. N 18. P. 5647.
- 43. Willis S.A, Nissen P.D. // J. Immunol. 1995. V. 154. N 3. P. 1399.
- Wilson M., Seymour R., Henderson B. // Infect. Immun. 1998. V. 66. N 6. P. 2401.
- 45. Wong M.L., Bongiorno P.B., Rettori V. et al. // Proc. Natl. Acad. Sci. USA. 1996. V. 94. P. 227.

Role regulatory peptides in mechanisms of central nervous system alterations in septicemia

N.G. Kharlanova, Yu. M. Lomov, E.A. Bardakhchyan

МЕДИЦИНСКИЕ НАУКИ

The gramnegative septic shock is mediated by complex interactions of endotoxin with cells and its mediators action - cytokines. Endotoxin-stimulates production cytokines - tumour necrosis factor -alpha, interleukin -1 beta, and IL-6 in the human central nervous system. Experimental and clinical studies focusing on the activities of cytokines have contributed in understanding of the pathogenes cerebral alterations in septicemia.

УДК 618. 1: 616. 992. 282-02-036.12 -08.08

О значении нарушений иммунного статуса в патогенезе хронического рецидивирующего генитального кандидоза