УДК 519.6; 159.9.01(075)

Об одной векторной задаче индустриально-организационной психологии на гиперграфе

Г.Г. Омельченко, С.И. Салпагаров

Карачаево-Черкесский государственный технологический институт, Черкесск, Россия

Настоящая работа посвящена экономико-математическому моделированию процесса кадрового обеспечения организации с учетом основных положений и методов индустриально-организационной психологии [1].

Объекты моделирования представлены в виде трех множеств: M_1 – множество людей, прошедших отбор и рассматриваемых в качестве претендентов на множество M_2 . Элементами множества M_2 являются вакантные (условно вакантные) должности, которые включены в бизнес-план данной организации. M_3 – множество видов обучения, выполняющих поддерживающую функцию, функцию социализации и мотивации представителей множества M_1 [1]. Элементами множества M_3 являются виды начального, повторного и развивающего обучения: рабочий инструктаж, ротация должностей, обучение в учебном центре на базе организации, обучение в вечерней школе, обучение на курсах повышения квалификации и переподготовки кадров, обучение в лицеях, колледжах, ВУЗах и академиях.

Сформулируем следующую задачу. Претендента из M_1 , прошедшего определенный вид обучения из M_3 , назначить на соответствующую его способностям, образованию и ожиданиям должность из M_2 . Результатом такого назначения должно стать повышение эффективности деятельности организации, выраженное в повышении общего уровня выполнения работы, реализации профессионального потенциала каждого сотрудника и формирования резерва талантливых людей, способностями которых организация могла бы воспользоваться в будущем. С точки зрения математического моделирования эта задача представляет собой обобщение известной в теории дискретной оптимизации задачи о назначениях [5]. При определении допустимых решений этой задачи должны быть учтены ограничения на финансовые, производственные, трудовые и временные ресурсы, имеющиеся в распоряжении данной организации. Качество этих решений оценивается как экономиче-

скими (в рублях), так и социально-психологическими критериями. Значениями социально-психологических критериев могут служить результаты тестов (в баллах), которые проводятся для оценки детерминант, определяющих уровень и качество выполнения работы. Например, такими детерминантами в [1] являются способность, готовность и возможность выполнять работу. Таким образом, рассматриваемая задача формулируется как многокритериальная.

В предлагаемой математической постановке задачи используются следующие понятия и обозначения теории гиперграфов [2]: G = (V, E) – гиперграф с множеством вершин $V = \{v\}$ и множеством ребер $E = \{e\}$; ребра $e \in E$ представляют собой подмножества множества V , т.е. $e \subset E$. Если каждое ребро $e \in E$ гиперграфа G состоит из λ вершин, то гиперграф G называют λ -однородным. При $\lambda = 3$ гиперграф G будем называть 3однородным; 3-однородный гиперграф G называется 3-дольным, если множество вершин V разбито на три подмножества V_s , $s=\overline{1,3}$ так, что в каждом ребре $e = (v_1, v_2, v_3) \in E$ его вершины принадлежат различным долям, т.е. $v_s \in V_s$, $s = \overline{1,3}$. В этом случаем гиперграф G будем обозначать через $G = (V_1, V_2, V_3, E)$. Если в паре ребер $e_1, e_2 \in E$ нет общего для них элемента $v \in V$, то эти ребра называются непересекающимися. Всякое подмножество попарно непересекающихся ребер называется паросочетанием данного гиперграфа G . Это паросочетание называется максимальным, если оно содержит максимальное число ребер и называется совершенным, если каждая вершина инцидентна [2] некоторому ребру паросочетания.

В качестве иллюстративного примера рассмотрим гиперграф $G=(V_1,V_2,V_3,E)\;,\quad V_1=\{1,2,3,4\}\;,\quad V_2=\{5,6,7\}\;,\quad V_3=\{8,9,10,11\}\;,$ $E=\{e_1,e_2,...,e_5\}\;,\quad \text{где}\quad e_1=(1,5,9)\;,\quad e_2=(3,6,10)\;,\quad e_3=(4,7,11)\;,$ $e_4=(1,7,10)\;,\; e_5=(2,5,8)\;,$ представленный на рис. 1.

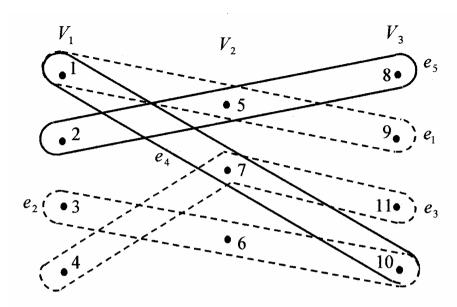


Рис. 1. 11-вершинный 3-дольный 3-однородный гиперграф $G = (V_1, V_2, V_3, E)$

Нетрудно увидеть, что в рассматриваемом гиперграфе имеются три тупиковых паросочетания $E_1=\{e_1,e_2,e_3\}$, $E_2=\{e_2,e_3,e_5\}$, $E_3=\{e_4,e_5\}$, $E_i\subset E$, $i=\overline{1,3}$. Паросочетание $E_0\subset E$ называется тупиковым, если любое ребро $e\in (E\setminus E_0)$ пересекается хотя бы с одним ребром из E_0 . Отметим, что максимальное (совершенное) паросочетание, согласно этого определения, также является тупиковым. Гиперграф, изображенный на рис. 1, содержит два максимальных паросочетания E_1 и E_2 .

Математическая постановка рассматриваемой задачи базируется на 3-дольном 3-однородном гиперграфе $G=(V_1,V_2,V_3,E)$, который определяется следующим образом. Вершины первой доли V_1 (второй доли V_2) поставлены во взаимнооднозначное соответствие указанному выше множеству претендентов M_1 (множеству должностей M_2), т.е. имеет место равенство мощностей: $|V_1|=|M_1|$ ($|V_2|=|M_2|$). Вершины третьей доли V_3 отражают

множество видов обучения претендентов с учетом представленных выше ограничений следующим образом. Пусть элементы множества M_3 перенумерованы индексом r=1,2,...,L, и для каждого значения r определено максимально возможное количество m_r людей, для которых организация может осуществить r-й вид обучения; обозначим $R=\sum_{r=1}^L m_r$. Каждому индексу r=1,2,...,L поставим в соответствие множество V_3^r мощности $\left|V_3^r\right|=m_r$. Тогда третья доля V_3 определяется как теоретико-множественное объединение всех множеств V_3^r , т.е. $V_3=\sum_{r=1}^L V_3^r$.

Рассмотрим пару элементов $v_1 \in V_1$, $v_2 \in V_2$, где v_1 означает определенного претендента, а v_2 представляет определенную должность. Тогда, если кандидат v_1 может заполнить вакансию v_2 после прохождения r-го вида обучения, согласно стратегии принятия решений о распределении вакантных должностей в данной организации [1], то считаем, что множество E содержит m_r ребер вида

$$e = (v_1, v_2, v'), v' \in V_3^r, V_3^r \subset V.$$

В противном случае множество E не содержит ни одного ребра вида (1). Ребро вида (1) условимся называть допустимой тройкой. Множество E всех ребер гиперграфа $G=(V_1,V_2,V_3,E)$, $V_3=\displaystyle\sum_{r=1}^L V_3^r$ образуется в результате теоретико-множественного объединения допустимых троек вида (1) по всем элементам $V_1\in V_1$, $V_2\in V_2$, $v'\in V_3^r$, r=1,...,L.

В классической постановке задачи о назначениях, сформулированной на 2-дольном графе, как правило, термин "допустимое решение" означает совершенное (максимальное) паросочетание на этом графе. Допустимым решением рассматриваемой задачи на гиперграфе является всякое тупиковое паросочетание. Для данного гиперграфа G=(V,E) тупиковое паросочетание представляем в виде его подгиперграфа

$$x = (V_x, E_x), V_x \subseteq V$$

 $E_x \subseteq E$. Через $X = X(G) = \{x\}$ обозначим множество всех допустимых решений (МДР) задачи о паросочетаниях на гиперграфе G .

Каждому ребру $e \in E$ вида (1) гиперграфа G = (V, E) приписаны два веса $w_n(e)$, n=1,2, которые означают $w_1(e)=f_1(v_1,v_2,v_3)$ — экономический эффект, т.е. ожидаемый доход организации (в рублях) в случае, когда претендент, представленный вершиной v_1 , прошел вид обучения, представленный вершиной v_3 , и назначен на должность, представленную вершиной v_2 ; $w_2(e)=f_2(v_1,v_2,v_3)$ — социально-психологический эффект, т.е. ожидаемый уровень социализации [1] претендента (в баллах) в этом же случае.

Качество допустимых решений этой задачи $x \in X$ оценивается с помощью векторной целевой функции (ВЦФ)

$$F(x) = (F_1(x), F_2(x)),$$
 (2)

состоящей из критериев вида MAXSUM

$$F_n(x) = \sum_{e \in E_x} w_n(e) \to \max, n = 1,2.$$
 (3)

Критерий $F_1(x)$ означает ожидаемый суммарный доход организации от указанного выше назначения. Критерий $F_2(x)$ означает ожидаемый уровень социализации всех претендентов, назначенных на соответствующие должности.

ВЦФ (2) – (3) определяет в МДР X паретовское множество (ПМ) \widetilde{X} , состоящее из паретовских оптимумов (ПО) \widetilde{x} [3]. В случае, если одинаковые по значению ВЦФ решения x', $x'' \in X$ считаются эквивалентными (неразличимыми), то из ПМ \widetilde{X} выделяется полное множество альтернатив (ПМА) X^0 . ПМА X^0 представляет собой максимальную систему векторно несравнимых ПО из \widetilde{X} , $X^0 \subseteq \widetilde{X}$.

Наиболее целесообразное решение выбирается из ПМА с помощью процедур теории выбора и принятия решений [4].

СПИСОК ЛИТЕРАТУРЫ:

- 1. Джуэлл Л. Индустриально-организационная психология. 2001. СПб.: Питер. 720 с.
- 2. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. 1990. М.: Наука. 384 с.
- 3. Емеличев В.А., Перепелица В.А.//Дискретная математика. 1994. Т. 6. вып. 1.С. 3.
- 4. Ларичев О.И. Наука и искусство принятия решения. 1979. М.: Наука. 200 с.
- 5. Сакович В.А. Исследование операций.1984. Минск.: Вышэйшая школа. 256 с.